Einleitung

Drei kleine verschiedene Aufgaben zur Differentialrechnung. Man muss Sachen berechnen und begründete Entscheidungen geben.
Dafür werden Potenzfunktionen 3. Grades mit Nullstellen, Tangenten, Ableitungen und Verschiebungen von Funktionen benutzt.

15 Minuten Erklärungen in 3 Aufgaben von Koonys Schule.

Aufgaben

1

Gegeben ist die Funktion $f(x) = x^3+2x^2-2x$. Die Abbildung zeigt den Graphen dieser
Funktion.

Berechnen Sie alle Nullstellen der
Funktion.

Entscheiden Sie begründet mit Hilfe einer Zeichnung in der Abbildung, ob die Gerade $g(x) = \frac{1}{2}x+5$ eine Tangente am Graphen von $f$ im Punkt P(-2 $\vert$ 4) ist.

2

Gegeben ist die Funktion $f(x) = x^3-3x^2-1$. Die Koordinaten des lokalen Hochpunktes und des lokalen Tiefpunktes sind ganzzahlig. Die Abbildung zeigt den Graphen der Funktion.

Entscheiden Sie begründet, ob der Graph der Ableitungsfunktion $f'$ eine nach oben oder nach unten geöffnete Parabel ist.

Geben Sie alle Werte für den Paramter c an, so dass die Funktion $g_c(x) = f(x) + c$ genau zwei Nullstellen besitzt. Begründen Sie Ihre Angabe.

3

Gegeben ist die Funktion $f(x) = \frac{1}{2}x^3 - x- 2$. Der Graph ist in der Abbildung dargestellt.

Weisen Sie rechnerisch nach, dass die in der Zeichnung erkennbare Nullstelle tatsächlich eine Nullstelle ist.

Gegeben ist die Funktion $g_a(x) = f(x+a)$. Geben Sie an, wie sich der Graph von $g_a$ verändert, wenn man für a immer größere Zahlen einsetzt.

Geben Sie außerdem einen Wert für $ a $ an, so dass die Funktion $g_a$ die Nullstelle
$x=-1$ besitzt.

PDF zum Drucken

Weitere Arbeitsblätter

Ebenen - Übungsaufgaben

52 min, 6 Aufgaben #1933

Verschiedene Übungen zu Ebenen. Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.

Übungsaufgaben Wahrscheinlichkeitsrechnung

39 min, 5 Aufgaben #1652

Übungsaufgaben mit Baumdiagrammen und Abzählverfahren. Mit dabei sind das Werfen von zwei Würfeln, Urnen mit Kugeln (mit bzw. ohne zurücklegen), Kombinatorik im Modehaus und Rosinenbrötchen.

Bernoulli-Ketten

43 min, 4 Aufgaben #1700

Es gibt vier grundlegende Aufgabentypen bei Bernoulli-Ketten. Diese werden hier einfach straightforward geübt.

Pythagoras - Anwendungen

49 min, 6 Aufgaben #0040

Anwendungsaufgaben mit dem Satz des Pythagoras. Unter anderem werden Diagonale von Quadrat und Würfel berechnet, Berechnungen am gleichschenkligen Dreieck, Pyramide und Walmdach durchgeführt u.v.m.

Ableitungsfunktion

34 min, 8 Aufgaben #1588

Der Differenzenquotient muss gebildet und Funktionen abgeleitet werden. Darüber hinaus muss eine Ausgangsfunktion gezeichnet und Funktionsgleichungen von Ausgangsfunktionen gebildet werden. Eine Aufgabe über die Differenzierbarkeit einer Betragsfunktion an einer bestimmten Stelle ist auch dabei.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum