Einleitung
Drei kleine verschiedene Aufgaben zur Differentialrechnung. Man muss Sachen berechnen und begründete Entscheidungen geben.
Dafür werden Potenzfunktionen 3. Grades mit Nullstellen, Tangenten, Ableitungen und Verschiebungen von Funktionen benutzt.
15 Minuten Erklärungen in 3 Aufgaben von Koonys Schule.
Aufgaben
Gegeben ist die Funktion $f(x) = x^3+2x^2-2x$. Die Abbildung zeigt den Graphen dieser
Funktion.
Berechnen Sie alle Nullstellen der
Funktion.
Entscheiden Sie begründet mit Hilfe einer Zeichnung in der Abbildung, ob die Gerade $g(x) = \frac{1}{2}x+5$ eine Tangente am Graphen von $f$ im Punkt P(-2 $\vert$ 4) ist.

Gegeben ist die Funktion $f(x) = x^3-3x^2-1$. Die Koordinaten des lokalen Hochpunktes und des lokalen Tiefpunktes sind ganzzahlig. Die Abbildung zeigt den Graphen der Funktion.
Entscheiden Sie begründet, ob der Graph der Ableitungsfunktion $f'$ eine nach oben oder nach unten geöffnete Parabel ist.
Geben Sie alle Werte für den Paramter c an, so dass die Funktion $g_c(x) = f(x) + c$ genau zwei Nullstellen besitzt. Begründen Sie Ihre Angabe.

Gegeben ist die Funktion $f(x) = \frac{1}{2}x^3 - x- 2$. Der Graph ist in der Abbildung dargestellt.
Weisen Sie rechnerisch nach, dass die in der Zeichnung erkennbare Nullstelle tatsächlich eine Nullstelle ist.
Gegeben ist die Funktion $g_a(x) = f(x+a)$. Geben Sie an, wie sich der Graph von $g_a$ verändert, wenn man für a immer größere Zahlen einsetzt.
Geben Sie außerdem einen Wert für $ a $ an, so dass die Funktion $g_a$ die Nullstelle
$x=-1$ besitzt.

Weitere Arbeitsblätter
Extremwertaufgaben
80 min, 8 Aufgaben #1597Acht verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es mit einem Schiff, in einer Spielzeugfabrik, auf einer Wiese oder als Motorradfahrer: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.
Studienkolleg Vektoren, SS 2017
126 min, 10 Aufgaben #1818Übungsblatt der Hochschule Kaiserslautern, University of Applied Sciences, zum Thema Vektoren.
Klammern auflösen
51 min, 5 Aufgaben #3335Aufgaben zum Vereinfachen von Termen mit Klammern. Zunächst Terme mit Minusklammern, dann welche mit doppelten Klammern (doppeltes Distributivgesetz). Am Ende, so ganz nebenbei, die binomischen Formeln und der ganze Spaß rückwärts: das Ausklammern.
Terme und Gleichungen in Texten
57 min, 10 Aufgaben #1300Das Arbeitsblatt besteht aus 3 Teilen. Aufgestellt werden müssen Terme (1), einfache Gleichungen (2), schwierige Gleichungen (3).
Übungen - konstruieren und argumentieren
69 min, 8 Aufgaben #4030Aufgaben zur Konstruktion von Dreiecken samt Inkreis, Umkreis und Schwerpunkt, sowie besondere Vierecke wie Raute und Drachenviereck. Alle schön verpackt in Textaufgaben.