Einleitung
Drei kleine verschiedene Aufgaben zur Differentialrechnung. Man muss Sachen berechnen und begründete Entscheidungen geben.
Dafür werden Potenzfunktionen 3. Grades mit Nullstellen, Tangenten, Ableitungen und Verschiebungen von Funktionen benutzt.
15 Minuten Erklärungen in 3 Aufgaben von Koonys Schule.
Aufgaben
Gegeben ist die Funktion $f(x) = x^3+2x^2-2x$. Die Abbildung zeigt den Graphen dieser
Funktion.
Berechnen Sie alle Nullstellen der
Funktion.
Entscheiden Sie begründet mit Hilfe einer Zeichnung in der Abbildung, ob die Gerade $g(x) = \frac{1}{2}x+5$ eine Tangente am Graphen von $f$ im Punkt P(-2 $\vert$ 4) ist.

Gegeben ist die Funktion $f(x) = x^3-3x^2-1$. Die Koordinaten des lokalen Hochpunktes und des lokalen Tiefpunktes sind ganzzahlig. Die Abbildung zeigt den Graphen der Funktion.
Entscheiden Sie begründet, ob der Graph der Ableitungsfunktion $f'$ eine nach oben oder nach unten geöffnete Parabel ist.
Geben Sie alle Werte für den Paramter c an, so dass die Funktion $g_c(x) = f(x) + c$ genau zwei Nullstellen besitzt. Begründen Sie Ihre Angabe.

Gegeben ist die Funktion $f(x) = \frac{1}{2}x^3 - x- 2$. Der Graph ist in der Abbildung dargestellt.
Weisen Sie rechnerisch nach, dass die in der Zeichnung erkennbare Nullstelle tatsächlich eine Nullstelle ist.
Gegeben ist die Funktion $g_a(x) = f(x+a)$. Geben Sie an, wie sich der Graph von $g_a$ verändert, wenn man für a immer größere Zahlen einsetzt.
Geben Sie außerdem einen Wert für $ a $ an, so dass die Funktion $g_a$ die Nullstelle
$x=-1$ besitzt.

Weitere Arbeitsblätter
Übungsaufgaben zur Stochastik
30 min, 6 Aufgaben #1654Die ersten fünf Aufgaben fragen danach, wie viele Elemente oder Möglichkeiten es gibt, und sind damit klassische Aufgaben zu Abzählverfahren (Kombinatorik). Die letzte Aufgabe beschäftigt sich mit Baumdiagrammen und Bernoulli-Ketten.
Quadratische Gleichungen
74 min, 7 Aufgaben #0062Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.
Glücksrad mit Urne - Übungsaufgabe Stochastik LK
21 min, 6 Aufgaben #1710Eine Übungsaufgabe, die Urne und Glücksrad kombiniert. Nebst Baumdiagrammen, Bernoulli und der summierten Binomialverteilung werden auch Gewinnerwartung und Prozentrechnung beim Kreis benötigt.
Klausur - Grundkurs - 2. Semester
42 min, 3 Aufgaben #1660Originale Grundkurs Klausur aus Berlin eines 2. Semesters. Der Hauptteil ist die Kurvendiskussion einer e-Funktion. Wendetangente, Stammfunktion und Flächeninhalt inklusive. Die andere Hälfte beinhaltet Integralrechnung mit Parametern und ein paar kombinatorische Aufgaben.
Extremwertaufgaben
72 min, 7 Aufgaben #1599Sieben verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es ein Rechteck im Kreis, der Graph einer Funktion, eine Konservendose oder eine Marmorplatte: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.