Einleitung

Dieses Arbeitsblatt führt an lineare Funktionen heran.
Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.

54 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Bestimme $ x $.

$ 23x + 8 + 2x = 2x + 10 $

$ 25x + 8 = 10 - 2x $

$ 8x + 3 = 5x + 54 $

$ -3x - 1 = -4x-2 $

2

Wandle in die Form $ y = m\cdot x + n $ um.

$ -8x + 4y = 20 $

$ 25x-5y = -15 $

$ -3x-4y = 12 $

$ \frac{3}{4}x = \frac{1}{10} - \frac{1}{8}y $

3

Fülle die Wertetabellen aus, zeichne die Punkte in ein Koordinatensystem und verbinde. Lies den Schnittpunkt ab.

$x$-2-101234
$f(x)=2x-3$


$x$-2-101234
$g(x)=-3x+7$

4

Gegeben ist eine Funktion und Punkte, die zu dieser Funktion gehören. Leider fehlt immer eine Koordinate. Berechne diese.

$ f(x) = 7x - 3 $


$ \EPUNKT{P}{-2}{y_\mathrm{P}} $, $ \EPUNKT{Q}{x_\mathrm{Q}}{11} $, $ \EPUNKT{R}{0}{y_\mathrm{R}} $

$ g(x) = -14x + 2 $


$ \EPUNKT{S}{-5}{y_\mathrm{S}} $, $ \EPUNKT{T}{x_\mathrm{T}}{-26} $, $ \EPUNKT{U}{x_\mathrm{U}}{0} $

5

Zeichne die zwei Funktionen in ein Koordinatensystem.

Berechne jeweils den Schnittpunkt der beiden Funktionen sowie deren Schnittpunkt mit der $ x $-Achse (Nullstelle) und $ y $-Achse.

$ f(x) = -4x + 2 $
$ g(x) = 8x - 2 $

$ h(x) = 9x + 10 $
$ k(x) = -5x - 2 $

6

Ein Taxifahrer verlangt für einen gefahrenen Kilometer 3€ und eine Grundgebühr von 5€.

Stelle die Kosten in Abhängigkeit der gefahrenen Kilometer graphisch dar.

Berechne den Preis für eine 12km lange Fahrt.

Wie weit kommt man mit 100€?

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 8 Funktionen


Weitere Arbeitsblätter

Strahlensätze *

27 min, 3 Aufgaben #4181

Die Strahlensätze werden zunächst an klassischen Aufgaben mit gegebener Skizze gezeigt und im Anschluss an Textaufgaben gefestigt.

Bernoulli-Ketten Anwendung

37 min, 4 Aufgaben #1701

Anwendungsaufgaben zu Bernoulli-Ketten. Die ersten zwei Aufgaben fragen die grundlegenden Berechnungen ab. Die dritte ist vom Typ mindestens-mindestens und die vierte zeichnet sich durch eine äußert schwierige Aufgabenstellung aus. Ein kühler Kopf ist hier gefragt.

IT Vorschau-Demnächst

0 min, 4 Aufgaben #7778

Cooles Blatt.

Berechnungen an Körpern

62 min, 6 Aufgaben #9598

Zunächst müssen Skizzen von Zylinder, Kegel, Pyramide und Kugel angefertigt werden. Anschließend gibt es einfache Aufgaben zu Oberfläche und Volumen wobei nur gegebene Werte in entsprechende Formeln eingesetzt werden müssen. Danach variieren die gegebenen Werte, sodass die Formeln umgestellt werden müssen.

Wichtige Formeln im Gebäudeenergiegesetz

0 min, 4 Aufgaben #PQUV

In diesem Arbeitsblatt werden die grundlegenden Formeln zur Berechnung der wichtigsten Kennzahlen im Gebäudeenergiegesetz (GEG) vorgestellt. Sie erhalten die notwendigen Formeln und Erklärungen, um den Primärenergiebedarf, den Transmissionswärmeverlust, den Erneuerbare-Energien-Anteil und den U-Wert zu verstehen und anzuwenden. Diese Kennzahlen sind entscheidend für die Beurteilung der Energieeffizienz von Gebäuden und für die Umsetzung der Vorgaben des GEG.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum