Einleitung

Dieses Arbeitsblatt führt an lineare Funktionen heran.
Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.

54 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Bestimme $ x $.

$ 23x + 8 + 2x = 2x + 10 $

$ 25x + 8 = 10 - 2x $

$ 8x + 3 = 5x + 54 $

$ -3x - 1 = -4x-2 $

2

Wandle in die Form $ y = m\cdot x + n $ um.

$ -8x + 4y = 20 $

$ 25x-5y = -15 $

$ -3x-4y = 12 $

$ \frac{3}{4}x = \frac{1}{10} - \frac{1}{8}y $

3

Fülle die Wertetabellen aus, zeichne die Punkte in ein Koordinatensystem und verbinde. Lies den Schnittpunkt ab.

$x$-2-101234
$f(x)=2x-3$


$x$-2-101234
$g(x)=-3x+7$

4

Gegeben ist eine Funktion und Punkte, die zu dieser Funktion gehören. Leider fehlt immer eine Koordinate. Berechne diese.

$ f(x) = 7x - 3 $


$ \EPUNKT{P}{-2}{y_\mathrm{P}} $, $ \EPUNKT{Q}{x_\mathrm{Q}}{11} $, $ \EPUNKT{R}{0}{y_\mathrm{R}} $

$ g(x) = -14x + 2 $


$ \EPUNKT{S}{-5}{y_\mathrm{S}} $, $ \EPUNKT{T}{x_\mathrm{T}}{-26} $, $ \EPUNKT{U}{x_\mathrm{U}}{0} $

5

Zeichne die zwei Funktionen in ein Koordinatensystem.

Berechne jeweils den Schnittpunkt der beiden Funktionen sowie deren Schnittpunkt mit der $ x $-Achse (Nullstelle) und $ y $-Achse.

$ f(x) = -4x + 2 $
$ g(x) = 8x - 2 $

$ h(x) = 9x + 10 $
$ k(x) = -5x - 2 $

6

Ein Taxifahrer verlangt für einen gefahrenen Kilometer 3€ und eine Grundgebühr von 5€.

Stelle die Kosten in Abhängigkeit der gefahrenen Kilometer graphisch dar.

Berechne den Preis für eine 12km lange Fahrt.

Wie weit kommt man mit 100€?

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 8 Funktionen


Weitere Arbeitsblätter

Arbeit - quadratische Funktionen

39 min, 4 Aufgaben #0069

Eine originale Arbeit mit 46 erreichbaren Punkten zum Thema quadratische Funktionen. Mit dabei: Linearfaktor, Satz von Vieta, Scheitelpunktsform, Optimierungsproblem und Imbiss Bronko.

Weidezelt Abitur GK Berlin 2016

64 min, 6 Aufgaben #1611

Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.

Kreise - Anwendung

59 min, 5 Aufgaben #8890

In verschiedenen Anwendungsaufgaben müssen die Kreisformeln genutzt werden. Umstellen der Formeln, Kreisausschnitte, Prozent- und Geschwindigkeitsrechnung müssen darüber hinaus angewendet werden.

Test über Vorkenntnisse zu ganzrationalen Funktionen

31 min, 4 Aufgaben #1515

Originaler Test mit 40 erreichbaren Punkten.

Abzählverfahren

54 min, 7 Aufgaben #1650

Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien. Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum