Aufgabe

Gegeben ist die Funktion $f(x) = \frac{1}{2}x^3 - x- 2$. Der Graph ist in der Abbildung dargestellt.

Weisen Sie rechnerisch nach, dass die in der Zeichnung erkennbare Nullstelle tatsächlich eine Nullstelle ist.

Gegeben ist die Funktion $g_a(x) = f(x+a)$. Geben Sie an, wie sich der Graph von $g_a$ verändert, wenn man für a immer größere Zahlen einsetzt.

Geben Sie außerdem einen Wert für $ a $ an, so dass die Funktion $g_a$ die Nullstelle
$x=-1$ besitzt.


Arbeitsblatt mit dieser Aufgabe

Klausurvorbereitung - Analysis - NRW

15 min, 3 Aufgaben #1580

Drei kleine verschiedene Aufgaben zur Differentialrechnung. Man muss Sachen berechnen und begründete Entscheidungen geben. Dafür werden Potenzfunktionen 3. Grades mit Nullstellen, Tangenten, Ableitungen und Verschiebungen von Funktionen benutzt.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum