Einleitung

Originale Klausur mit 38 Punkten. Das Verständnis zu den Begrifflichkeiten des Themas muss gezeigt, ein Grenzwert mit Hilfe des Differentialquotienten berechnen und Potenzfunktionen mit Ableitungsregeln differenziert (abgeleitet) werden. Zusätzlich kommt das Berührproblem und das Tangentenproblem sowie eine Anwendungsaufgabe vor.

42 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.

Aufgaben

1

Welche Ausdrücke haben die gleiche Bedeutung?

lokale Änderungsrate

$ \frac{f(x) - f(x_0)}{x-x_0} $

$ f(x_0) $

Steigung der Sekante durch $ \EPUNKT{P}{x_0}{f(x_0)} $ und $ \EPUNKT{Q}{x}{f(x)} $

Differentialquotient

Funktionswert von $ f $ an der Stelle $ x_0 $.

mittlere Änderungsrate

$ f'(x_0) $

Steigung der Tangente in $ \EPUNKT{P}{x_0}{f(x_0)} $

2

Gegeben ist die Funktion $ f(x) = 0,5x^2 + 5x $. Berechnen Sie die Steigung der Funktion an der Stelle $ x_0 = -2 $ mithilfe des Grenzwertes $ \lim\limits_{x\rightarrow x_0} \frac{f(x) - f(x_0)}{x-x_0} $.

3

Differenzieren Sie die gegebenen Funktionen mithilfe der Ableitungsregeln.

$ f(x) = \frac{1}{5} x^5 - 2x^3 + x $

$ f(x) = -\frac{3}{4} x^3 + 4x^2 - 3 $

4

Gegeben sind die Funktionen $ f(x) = -x^3 + 4x^2 - 7x + 6 $ und $ g(x) = -x^2 + 3 $.

Zeigen Sie, dass der Punkt $ \EPUNKT{P}{1}{f(1)} $ auch auf dem Graphen von $ g $ liegt.

Weisen Sie nach, dass sich die Graphen von $ f $ und $ g $ in P berühren.

Ermitteln Sie die Funktionsgleichung der Berührtangente.

5

Ein Hochwasserdamm kann für
$ 0 \le x \le 6 $ durch die Funktion $ f(x) = -\frac{1}{50}x^4 + \frac{3}{25}x^3 $ beschrieben werden. ($ 1\,\mathrm{LE} \equiv 2\,\mathrm{m} $)

(a) Bestimmen Sie die maximale Höhe des Dammes in Metern.

Ein Bild aus der Koonys Schule Aufgabe 98f12.


(b) Unter welchem Winkel muss eine Leiter angestellt werden, die den Damm an der Stelle $ x = 5 $ berührt?

PDF zum Drucken

Weitere Arbeitsblätter

Lernkontrolle Potenzen

39 min, 8 Aufgaben #0994

Verschiedene Aufgaben zu Zehnerpotenzen. Zwei Textaufgaben inklusive. Bei den zwei letzten Aufgaben müssen mit Hilfe von Potenzgesetzen Terme vereinfacht werden.

Lineare Funktionen

54 min, 6 Aufgaben #3800

Dieses Arbeitsblatt führt an lineare Funktionen heran. Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.

random title

0 min, 0 Aufgaben #GKVW

Kepler und Gravitation

81 min, 8 Aufgaben #6030

Zwei Massen ziehen sich, je nach ihrer Entfernung voneinander, an. Eine Formel um auszurechnen wie stark gibt es natürlich auch. Damit einhergehend gibt es Aufgaben, die gelöst werden können. Zum Beispiel Geschwindigkeiten von Raketen und Satelliten oder die Masse der Sonne.

Ableitungsfunktion und ihre Anwendung

92 min, 12 Aufgaben #1590

Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum