Einleitung

Originale Klausur mit 38 Punkten. Das Verständnis zu den Begrifflichkeiten des Themas muss gezeigt, ein Grenzwert mit Hilfe des Differentialquotienten berechnen und Potenzfunktionen mit Ableitungsregeln differenziert (abgeleitet) werden. Zusätzlich kommt das Berührproblem und das Tangentenproblem sowie eine Anwendungsaufgabe vor.

42 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.

Aufgaben

1

Welche Ausdrücke haben die gleiche Bedeutung?

lokale Änderungsrate

$ \frac{f(x) - f(x_0)}{x-x_0} $

$ f(x_0) $

Steigung der Sekante durch $ \EPUNKT{P}{x_0}{f(x_0)} $ und $ \EPUNKT{Q}{x}{f(x)} $

Differentialquotient

Funktionswert von $ f $ an der Stelle $ x_0 $.

mittlere Änderungsrate

$ f'(x_0) $

Steigung der Tangente in $ \EPUNKT{P}{x_0}{f(x_0)} $

2

Gegeben ist die Funktion $ f(x) = 0,5x^2 + 5x $. Berechnen Sie die Steigung der Funktion an der Stelle $ x_0 = -2 $ mithilfe des Grenzwertes $ \lim\limits_{x\rightarrow x_0} \frac{f(x) - f(x_0)}{x-x_0} $.

3

Differenzieren Sie die gegebenen Funktionen mithilfe der Ableitungsregeln.

$ f(x) = \frac{1}{5} x^5 - 2x^3 + x $

$ f(x) = -\frac{3}{4} x^3 + 4x^2 - 3 $

4

Gegeben sind die Funktionen $ f(x) = -x^3 + 4x^2 - 7x + 6 $ und $ g(x) = -x^2 + 3 $.

Zeigen Sie, dass der Punkt $ \EPUNKT{P}{1}{f(1)} $ auch auf dem Graphen von $ g $ liegt.

Weisen Sie nach, dass sich die Graphen von $ f $ und $ g $ in P berühren.

Ermitteln Sie die Funktionsgleichung der Berührtangente.

5

Ein Hochwasserdamm kann für
$ 0 \le x \le 6 $ durch die Funktion $ f(x) = -\frac{1}{50}x^4 + \frac{3}{25}x^3 $ beschrieben werden. ($ 1\,\mathrm{LE} \equiv 2\,\mathrm{m} $)

(a) Bestimmen Sie die maximale Höhe des Dammes in Metern.


(b) Unter welchem Winkel muss eine Leiter angestellt werden, die den Damm an der Stelle $ x = 5 $ berührt?

PDF zum Drucken

Weitere Arbeitsblätter

Kreise - Anwendung

67 min, 6 Aufgaben #8889

Flächen- und Umfangsformel des Kreises müssen in verschiedenen Aufgaben flexibel und mehrschrittig eingesetzt werden.

Wochenübung mit Klammern und Gleichungen

29 min, 7 Aufgaben #1234

7 Aufgaben für 7 Tage. Es müssen Klammern aufgelöst, Terme zusammengefasst und vor allem Gleichungen gelöst werden. Dabei treten unter anderem auch mal Brüche, die binomischen Formeln und die pq-Formel mit auf.

Studienkolleg Vektoren, SS 2017

126 min, 10 Aufgaben #1818

Übungsblatt der Hochschule Kaiserslautern, University of Applied Sciences, zum Thema Vektoren.

Gartenhaus Abitur GK Berlin 2016

62 min, 6 Aufgaben #1981

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Weidezelt Abitur GK Berlin 2016

64 min, 6 Aufgaben #1611

Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum