Einleitung
Originale Klausur mit 38 Punkten. Das Verständnis zu den Begrifflichkeiten des Themas muss gezeigt, ein Grenzwert mit Hilfe des Differentialquotienten berechnen und Potenzfunktionen mit Ableitungsregeln differenziert (abgeleitet) werden. Zusätzlich kommt das Berührproblem und das Tangentenproblem sowie eine Anwendungsaufgabe vor.
42 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Welche Ausdrücke haben die gleiche Bedeutung?
lokale Änderungsrate
$ \frac{f(x) - f(x_0)}{x-x_0} $
$ f(x_0) $
Steigung der Sekante durch $ \EPUNKT{P}{x_0}{f(x_0)} $ und $ \EPUNKT{Q}{x}{f(x)} $
Differentialquotient
Funktionswert von $ f $ an der Stelle $ x_0 $.
mittlere Änderungsrate
$ f'(x_0) $
Steigung der Tangente in $ \EPUNKT{P}{x_0}{f(x_0)} $
Gegeben ist die Funktion $ f(x) = 0,5x^2 + 5x $. Berechnen Sie die Steigung der Funktion an der Stelle $ x_0 = -2 $ mithilfe des Grenzwertes $ \lim\limits_{x\rightarrow x_0} \frac{f(x) - f(x_0)}{x-x_0} $.
Differenzieren Sie die gegebenen Funktionen mithilfe der Ableitungsregeln.
$ f(x) = \frac{1}{5} x^5 - 2x^3 + x $
$ f(x) = -\frac{3}{4} x^3 + 4x^2 - 3 $
Gegeben sind die Funktionen $ f(x) = -x^3 + 4x^2 - 7x + 6 $ und $ g(x) = -x^2 + 3 $.
Zeigen Sie, dass der Punkt $ \EPUNKT{P}{1}{f(1)} $ auch auf dem Graphen von $ g $ liegt.
Weisen Sie nach, dass sich die Graphen von $ f $ und $ g $ in P berühren.
Ermitteln Sie die Funktionsgleichung der Berührtangente.
Ein Hochwasserdamm kann für
$ 0 \le x \le 6 $ durch die Funktion $ f(x) = -\frac{1}{50}x^4 + \frac{3}{25}x^3 $ beschrieben werden. ($ 1\,\mathrm{LE} \equiv 2\,\mathrm{m} $)
(a) Bestimmen Sie die maximale Höhe des Dammes in Metern.

(b) Unter welchem Winkel muss eine Leiter angestellt werden, die den Damm an der Stelle $ x = 5 $ berührt?
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Quadratische Gleichungen
74 min, 7 Aufgaben #0062Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.
Abschlussarbeit Klasse 9 mit Taschenrechner
38 min, 3 Aufgaben #2852Aufgaben quer durch die 9. Klasse. Statistik, Diagramme, Volumenberechnungen am Kegel, Funktionen und mehr im Koordinatensystem. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
Kleine vermischte Übungen - Klasse 10
39 min, 13 Aufgaben #7400Bunt gemischte Textaufgaben zu verschiedenen Themen der 10. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.
Quadratische Funktionen
53 min, 6 Aufgaben #0070Eine Einführung in quadratische Funktionen. Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen. Ausblick könnte die quadratische Ergänzung sein.
Klausurvorbereitung - Analysis - NRW
15 min, 3 Aufgaben #1580Drei kleine verschiedene Aufgaben zur Differentialrechnung. Man muss Sachen berechnen und begründete Entscheidungen geben. Dafür werden Potenzfunktionen 3. Grades mit Nullstellen, Tangenten, Ableitungen und Verschiebungen von Funktionen benutzt.