Einleitung
Originale Klausur mit 38 Punkten. Das Verständnis zu den Begrifflichkeiten des Themas muss gezeigt, ein Grenzwert mit Hilfe des Differentialquotienten berechnen und Potenzfunktionen mit Ableitungsregeln differenziert (abgeleitet) werden. Zusätzlich kommt das Berührproblem und das Tangentenproblem sowie eine Anwendungsaufgabe vor.
42 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Welche Ausdrücke haben die gleiche Bedeutung?
lokale Änderungsrate
$ \frac{f(x) - f(x_0)}{x-x_0} $
$ f(x_0) $
Steigung der Sekante durch $ \EPUNKT{P}{x_0}{f(x_0)} $ und $ \EPUNKT{Q}{x}{f(x)} $
Differentialquotient
Funktionswert von $ f $ an der Stelle $ x_0 $.
mittlere Änderungsrate
$ f'(x_0) $
Steigung der Tangente in $ \EPUNKT{P}{x_0}{f(x_0)} $
Gegeben ist die Funktion $ f(x) = 0,5x^2 + 5x $. Berechnen Sie die Steigung der Funktion an der Stelle $ x_0 = -2 $ mithilfe des Grenzwertes $ \lim\limits_{x\rightarrow x_0} \frac{f(x) - f(x_0)}{x-x_0} $.
Differenzieren Sie die gegebenen Funktionen mithilfe der Ableitungsregeln.
$ f(x) = \frac{1}{5} x^5 - 2x^3 + x $
$ f(x) = -\frac{3}{4} x^3 + 4x^2 - 3 $
Gegeben sind die Funktionen $ f(x) = -x^3 + 4x^2 - 7x + 6 $ und $ g(x) = -x^2 + 3 $.
Zeigen Sie, dass der Punkt $ \EPUNKT{P}{1}{f(1)} $ auch auf dem Graphen von $ g $ liegt.
Weisen Sie nach, dass sich die Graphen von $ f $ und $ g $ in P berühren.
Ermitteln Sie die Funktionsgleichung der Berührtangente.
Ein Hochwasserdamm kann für
$ 0 \le x \le 6 $ durch die Funktion $ f(x) = -\frac{1}{50}x^4 + \frac{3}{25}x^3 $ beschrieben werden. ($ 1\,\mathrm{LE} \equiv 2\,\mathrm{m} $)
(a) Bestimmen Sie die maximale Höhe des Dammes in Metern.

(b) Unter welchem Winkel muss eine Leiter angestellt werden, die den Damm an der Stelle $ x = 5 $ berührt?
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Wurzelterme vereinfachen ohne Taschenrechner
41 min, 13 Aufgaben #0990Viele verschiedene Aufgaben zum Zusammenfassen von Wurzeltermen. Dabei werden neben den Wurzelgesetzen auch binomische Formeln benötigt.
Ableitungsfunktion
34 min, 8 Aufgaben #1588Der Differenzenquotient muss gebildet und Funktionen abgeleitet werden. Darüber hinaus muss eine Ausgangsfunktion gezeichnet und Funktionsgleichungen von Ausgangsfunktionen gebildet werden. Eine Aufgabe über die Differenzierbarkeit einer Betragsfunktion an einer bestimmten Stelle ist auch dabei.
Kegel, Pyramide, Kugel
27 min, 5 Aufgaben #9540Die Formeln zur Oberflächen- und Volumenberechnung bei Kegeln, Pyramiden und Kugel kommen zur Anwendung. Es kommt dabei u.a. auch der Dreisatz sowie die Dichte-Formel zur Anwendung.
Strahlensätze *
27 min, 3 Aufgaben #4181Die Strahlensätze werden zunächst an klassischen Aufgaben mit gegebener Skizze gezeigt und im Anschluss an Textaufgaben gefestigt.
Abzählverfahren
35 min, 6 Aufgaben #1651Verschiedene Aufgaben mit Würfel-Würfen und Zahlen mit ihren Ziffern. Gefragt ist jedes mal nach der Wahrscheinlichkeit, dass ein bestimmtes Ereignis passiert. Schwierigkeit liegt darin herauszufinden, was die Anzahl aller Ergebnisse und die Anzahl der günstigen Ergebnisse ist.