Einleitung

Originale Klausur mit 38 Punkten. Das Verständnis zu den Begrifflichkeiten des Themas muss gezeigt, ein Grenzwert mit Hilfe des Differentialquotienten berechnen und Potenzfunktionen mit Ableitungsregeln differenziert (abgeleitet) werden. Zusätzlich kommt das Berührproblem und das Tangentenproblem sowie eine Anwendungsaufgabe vor.

42 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.

Aufgaben

1

Welche Ausdrücke haben die gleiche Bedeutung?

lokale Änderungsrate

$ \frac{f(x) - f(x_0)}{x-x_0} $

$ f(x_0) $

Steigung der Sekante durch $ \EPUNKT{P}{x_0}{f(x_0)} $ und $ \EPUNKT{Q}{x}{f(x)} $

Differentialquotient

Funktionswert von $ f $ an der Stelle $ x_0 $.

mittlere Änderungsrate

$ f'(x_0) $

Steigung der Tangente in $ \EPUNKT{P}{x_0}{f(x_0)} $

2

Gegeben ist die Funktion $ f(x) = 0,5x^2 + 5x $. Berechnen Sie die Steigung der Funktion an der Stelle $ x_0 = -2 $ mithilfe des Grenzwertes $ \lim\limits_{x\rightarrow x_0} \frac{f(x) - f(x_0)}{x-x_0} $.

3

Differenzieren Sie die gegebenen Funktionen mithilfe der Ableitungsregeln.

$ f(x) = \frac{1}{5} x^5 - 2x^3 + x $

$ f(x) = -\frac{3}{4} x^3 + 4x^2 - 3 $

4

Gegeben sind die Funktionen $ f(x) = -x^3 + 4x^2 - 7x + 6 $ und $ g(x) = -x^2 + 3 $.

Zeigen Sie, dass der Punkt $ \EPUNKT{P}{1}{f(1)} $ auch auf dem Graphen von $ g $ liegt.

Weisen Sie nach, dass sich die Graphen von $ f $ und $ g $ in P berühren.

Ermitteln Sie die Funktionsgleichung der Berührtangente.

5

Ein Hochwasserdamm kann für
$ 0 \le x \le 6 $ durch die Funktion $ f(x) = -\frac{1}{50}x^4 + \frac{3}{25}x^3 $ beschrieben werden. ($ 1\,\mathrm{LE} \equiv 2\,\mathrm{m} $)

(a) Bestimmen Sie die maximale Höhe des Dammes in Metern.

Ein Bild aus der Koonys Schule Aufgabe 98f12.


(b) Unter welchem Winkel muss eine Leiter angestellt werden, die den Damm an der Stelle $ x = 5 $ berührt?

PDF zum Drucken

Weitere Arbeitsblätter

Weidezelt Abitur GK Berlin 2016

64 min, 6 Aufgaben #1611

Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.

Hypothesentests - Signifikanztests

68 min, 5 Aufgaben #1740

Aufgaben bei denen Nullhypothesen aufgestellt und mit Entscheidungsregeln angenommen oder verworfen werden. Es kommen einseitige und zweiseitige Signifikanztests vor.

Abzählverfahren

54 min, 7 Aufgaben #1650

Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien. Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.

Arbeit - ganzrationale Funktionen

49 min, 3 Aufgaben #1520

Klassenarbeit über ganzrationale Funktionen mit 55 erreichbaren Punkten.

Terme vereinfachen

35 min, 4 Aufgaben #2832

Übungen zum Vereinfachen von Termen durch die vier Grundrechenarten: Addition, Subtraktion, Multiplikation und Division. Unter anderem müssen gleichartige Glieder zusammengefasst und Klammern aufgelöst werden.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum