Einleitung
Aufgaben von leicht nach schwerer zum Üben.
61 Minuten Erklärungen in 10 Aufgaben von Mathe mit Rick und Koonys Schule.
Aufgaben
Berechne die folgenden unbestimmten Integrale.
$\int x^3\,\mathrm{d}x$
$\int x^4\,\mathrm{d}x$
$\int x^5\,\mathrm{d}x$
$\int m\cdot x^{10}\,\mathrm{d}x$
Berechnen Sie die folgenden unbestimmten Integrale.
$\int (x^3 + 5)\,\mathrm{d}x$
$\int (x^4 + 2)\,\mathrm{d}x$
$\int (x^5 - 1)\,\mathrm{d}x$
Berechne die unbestimmten Integrale.
$\int (x^3 + x)\,\mathrm{d}x$
$\int (x^4 + x^3)\,\mathrm{d}x$
$\int (x^5 - x)\,\mathrm{d}x$
Berechne die folgenden unbestimmten Integrale.
$\int (4x^3 + 2x)\,\mathrm{d}x$
$\int (2x^4 + 4x)\,\mathrm{d}x$
$\int (6x^3 - 6x^2)\,\mathrm{d}x$
Berechne die folgenden unbestimmten Integrale.
$ \int (2x^4+5x^3) \,\mathrm{d}x $
$ \int (6x^5-x^2) \,\mathrm{d}x $
$ \int (2x^4 - 2x^3) \,\mathrm{d}x $
Weitere Arbeitsblätter
Analytische Geometrie - Vermischte Aufgaben
71 min, 5 Aufgaben #1919Vektoren, Geraden und Ebenen im dreidimensionalen Raum. Die Aufgaben sind bunt gemischt. Angefangen bei Winkeln und Flächeninhalten über fehlende Koordinaten hin zu Abstandsberechnungen, Seitenverhältnissen, Ebenen und sogar Kugeln.
Aus 3 mach 4 - Abitur GK Berlin 2008
23 min, 5 Aufgaben #1987Original Abiturprüfung aus Berlin für den Grundkurs mit einem Glücksspielautomat. Mit dabei war die Kombinatorik, stochastische Unabhängigkeit, Bernoulli-Ketten, mindestens-mindestens Aufgabe und ein Hypothesentest.
Prozentrechnung - Grundlagen
81 min, 5 Aufgaben #0100Hier geht es um pures Rechnen. Zunächst wird der Zusammenhang von Prozenten und Brüchen geübt und im Anschluss die drei grundlegenden Aufgabentypen der Prozentrechnung.
Kreise - Anwendung
59 min, 5 Aufgaben #8890In verschiedenen Anwendungsaufgaben müssen die Kreisformeln genutzt werden. Umstellen der Formeln, Kreisausschnitte, Prozent- und Geschwindigkeitsrechnung müssen darüber hinaus angewendet werden.
Mathematische Kompetenzen - Zufall
15 min, 6 Aufgaben #0008Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.