Einleitung

Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.

36 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.

Aufgaben

1

In einer Urne befinden sich vier gleichartige Kugeln, die die Buchstaben A, B, C und D tragen. Aus der Urne werden zwei Kugeln nacheinander gezogen. Jede Kugel wird sofort nach ihrer Ziehung wieder zurückgelegt.

Zeichne das zugehörige Baumdiagramm. Gib die Ergebnismenge S an und berechne die Wahrscheinlichkeit für die folgenden Ereignisse:

$\mathrm{E_1}$: Die erste Kugel trägt den Buchstaben A, die zweite den Buchstaben B.
$\mathrm{E_2}$: Die erste Kugel trägt den Buchstaben D, die zweite den Buchstaben A.
$\mathrm{E_3}$: Die zweite Kugel trägt den Buchstaben D.
$\mathrm{E_4}$: Die zweite Kugel trägt den Buchstaben B.

2

In einer Urne befinden sich acht schwarze und vier gelbe gleichartige Kugeln. Es werden nacheinander drei Kugeln gezogen. Die Farbe jeder Kugel wird notiert, die Kugeln werden nicht wieder in die Urne zurückgelegt.

Gib die Ergebnismenge S an und berechne die Wahrscheinlichkeiten aller Ergebnisse.

Gib die folgenden Ereignisse jeweils als Teilmenge von S an und berechne ihre Wahrscheinlichkeiten.
$\mathrm{E_1}$: Es werden genau zwei gelbe Kugeln gezogen.
$\mathrm{E_2}$: Es werden genau drei schwarze Kugeln gezogen.
$\mathrm{E_3}$: Es werden höchstens zwei gelbe Kugeln gezogen.
$\mathrm{E_4}$: Es wird mindestens eine schwarze Kugel gezogen.

3

In einer Warensendung befinden sich zehn funktionsfähige (f) und vier defekte (d) elektronische Bauteile. Ein funktionsfähiges elektronisches Bauteil soll herausgefunden werden.

Berechne die Wahrscheinlichkeit dafür, dass höchstens drei elektronische Bauteile getestet werden müssen, um ein funktionsfähiges Bauteil zu erhalten.

Wie viele Bauteile müssen der Warensendung höchstens entnommen werden, um ein funktionsfähiges Bauteil zu erhalten? Berechne die Wahrscheinlichkeit für diesen Fall.

4

Bei einer Lotterie gewinnen 1% der Lose 10€, 2% der Lose 5€, 3% der Lose 2€ und 4% der Lose 1€. Die restlichen Lose sind Nieten. Jedes Los kostet 0,50€.

Welchen Gewinn kannst du erwarten, wenn du 200 Lose kaufst?

Wie viel Euro muss ein Los kosten, wenn der Lotterieveranstalter im Mittel pro Los 0,70€ verdienen will?

PDF zum Drucken

Weitere Arbeitsblätter

Übungen zu kombinatorischen Abzählverfahren

29 min, 8 Aufgaben #1648

Ob mit oder ohne Reihenfolge und mit oder ohne Wiederholung: die Frage, die sich stellt, ist immer die gleiche: wie viele Möglichkeiten gibt es? Bei den Aufgaben kommt man noch häufig durch Abzählen zur Lösung.

Klassenarbeit Terme und Gleichungen

27 min, 4 Aufgaben #3749

Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.

Rechnen mit Dezimalbrüchen

58 min, 10 Aufgaben #0670

Viele Aufgaben zu den vier Hauptrechenarten mit Dezimalbrüchen. Schriftlich muss Plus, Minus, Mal und Durch benutzt werden.

Test über Vorkenntnisse zu ganzrationalen Funktionen

31 min, 4 Aufgaben #1515

Originaler Test mit 40 erreichbaren Punkten.

Quadratische Gleichungen

40 min, 5 Aufgaben #0060

Die Aufgaben führen schrittweise an das Lösen von reinquadratischen Gleichungen verschiedener Formen heran.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum