Einleitung

Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.

36 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.

Aufgaben

1

In einer Urne befinden sich vier gleichartige Kugeln, die die Buchstaben A, B, C und D tragen. Aus der Urne werden zwei Kugeln nacheinander gezogen. Jede Kugel wird sofort nach ihrer Ziehung wieder zurückgelegt.

Zeichne das zugehörige Baumdiagramm. Gib die Ergebnismenge S an und berechne die Wahrscheinlichkeit für die folgenden Ereignisse:

$\mathrm{E_1}$: Die erste Kugel trägt den Buchstaben A, die zweite den Buchstaben B.
$\mathrm{E_2}$: Die erste Kugel trägt den Buchstaben D, die zweite den Buchstaben A.
$\mathrm{E_3}$: Die zweite Kugel trägt den Buchstaben D.
$\mathrm{E_4}$: Die zweite Kugel trägt den Buchstaben B.

2

In einer Urne befinden sich acht schwarze und vier gelbe gleichartige Kugeln. Es werden nacheinander drei Kugeln gezogen. Die Farbe jeder Kugel wird notiert, die Kugeln werden nicht wieder in die Urne zurückgelegt.

Gib die Ergebnismenge S an und berechne die Wahrscheinlichkeiten aller Ergebnisse.

Gib die folgenden Ereignisse jeweils als Teilmenge von S an und berechne ihre Wahrscheinlichkeiten.
$\mathrm{E_1}$: Es werden genau zwei gelbe Kugeln gezogen.
$\mathrm{E_2}$: Es werden genau drei schwarze Kugeln gezogen.
$\mathrm{E_3}$: Es werden höchstens zwei gelbe Kugeln gezogen.
$\mathrm{E_4}$: Es wird mindestens eine schwarze Kugel gezogen.

3

In einer Warensendung befinden sich zehn funktionsfähige (f) und vier defekte (d) elektronische Bauteile. Ein funktionsfähiges elektronisches Bauteil soll herausgefunden werden.

Berechne die Wahrscheinlichkeit dafür, dass höchstens drei elektronische Bauteile getestet werden müssen, um ein funktionsfähiges Bauteil zu erhalten.

Wie viele Bauteile müssen der Warensendung höchstens entnommen werden, um ein funktionsfähiges Bauteil zu erhalten? Berechne die Wahrscheinlichkeit für diesen Fall.

4

Bei einer Lotterie gewinnen 1% der Lose 10€, 2% der Lose 5€, 3% der Lose 2€ und 4% der Lose 1€. Die restlichen Lose sind Nieten. Jedes Los kostet 0,50€.

Welchen Gewinn kannst du erwarten, wenn du 200 Lose kaufst?

Wie viel Euro muss ein Los kosten, wenn der Lotterieveranstalter im Mittel pro Los 0,70€ verdienen will?

PDF zum Drucken

Weitere Arbeitsblätter

Ableitungsfunktion und ihre Anwendung

92 min, 12 Aufgaben #1590

Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.

Test über Vorkenntnisse zu ganzrationalen Funktionen

31 min, 4 Aufgaben #1515

Originaler Test mit 40 erreichbaren Punkten.

Hemden mit Mängeln Abitur LK Berlin 2011

32 min, 6 Aufgaben #1720

Original Abiturprüfung für den Leistungskurs aus Berlin. Die Aufgabe dreht sich rund um Hypothesentests. Kumulierte Binomialverteilung und Standardnormalverteilung, sowie gesunder Menschenverstand werden gebraucht.

Quadratische Gleichungen

74 min, 7 Aufgaben #0062

Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum