Einleitung
Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.
36 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.
Aufgaben
In einer Urne befinden sich vier gleichartige Kugeln, die die Buchstaben A, B, C und D tragen. Aus der Urne werden zwei Kugeln nacheinander gezogen. Jede Kugel wird sofort nach ihrer Ziehung wieder zurückgelegt.
Zeichne das zugehörige Baumdiagramm. Gib die Ergebnismenge S an und berechne die Wahrscheinlichkeit für die folgenden Ereignisse:
$\mathrm{E_1}$: Die erste Kugel trägt den Buchstaben A, die zweite den Buchstaben B.
$\mathrm{E_2}$: Die erste Kugel trägt den Buchstaben D, die zweite den Buchstaben A.
$\mathrm{E_3}$: Die zweite Kugel trägt den Buchstaben D.
$\mathrm{E_4}$: Die zweite Kugel trägt den Buchstaben B.
In einer Urne befinden sich acht schwarze und vier gelbe gleichartige Kugeln. Es werden nacheinander drei Kugeln gezogen. Die Farbe jeder Kugel wird notiert, die Kugeln werden nicht wieder in die Urne zurückgelegt.
Gib die Ergebnismenge S an und berechne die Wahrscheinlichkeiten aller Ergebnisse.
Gib die folgenden Ereignisse jeweils als Teilmenge von S an und berechne ihre Wahrscheinlichkeiten.
$\mathrm{E_1}$: Es werden genau zwei gelbe Kugeln gezogen.
$\mathrm{E_2}$: Es werden genau drei schwarze Kugeln gezogen.
$\mathrm{E_3}$: Es werden höchstens zwei gelbe Kugeln gezogen.
$\mathrm{E_4}$: Es wird mindestens eine schwarze Kugel gezogen.
In einer Warensendung befinden sich zehn funktionsfähige (f) und vier defekte (d) elektronische Bauteile. Ein funktionsfähiges elektronisches Bauteil soll herausgefunden werden.
Berechne die Wahrscheinlichkeit dafür, dass höchstens drei elektronische Bauteile getestet werden müssen, um ein funktionsfähiges Bauteil zu erhalten.
Wie viele Bauteile müssen der Warensendung höchstens entnommen werden, um ein funktionsfähiges Bauteil zu erhalten? Berechne die Wahrscheinlichkeit für diesen Fall.
Bei einer Lotterie gewinnen 1% der Lose 10€, 2% der Lose 5€, 3% der Lose 2€ und 4% der Lose 1€. Die restlichen Lose sind Nieten. Jedes Los kostet 0,50€.
Welchen Gewinn kannst du erwarten, wenn du 200 Lose kaufst?
Wie viel Euro muss ein Los kosten, wenn der Lotterieveranstalter im Mittel pro Los 0,70€ verdienen will?
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Kreise - Anwendung
59 min, 5 Aufgaben #8890In verschiedenen Anwendungsaufgaben müssen die Kreisformeln genutzt werden. Umstellen der Formeln, Kreisausschnitte, Prozent- und Geschwindigkeitsrechnung müssen darüber hinaus angewendet werden.
kgV und ggT
50 min, 6 Aufgaben #0010Primfaktorzerlegung, größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches nimmt die Hälfte des Blattes ein. Die andere Hälfte sind Anwendungsaufgaben.
Ableitungsfunktion und ihre Anwendung
92 min, 12 Aufgaben #1590Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.
Übungsaufgaben zur Stochastik
30 min, 6 Aufgaben #1654Die ersten fünf Aufgaben fragen danach, wie viele Elemente oder Möglichkeiten es gibt, und sind damit klassische Aufgaben zu Abzählverfahren (Kombinatorik). Die letzte Aufgabe beschäftigt sich mit Baumdiagrammen und Bernoulli-Ketten.
Ebenen - Übungsaufgaben
52 min, 6 Aufgaben #1933Verschiedene Übungen zu Ebenen. Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.