Einleitung

Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion.
Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann.
Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.

92 Minuten Erklärungen in 12 Aufgaben von Koonys Schule.

Aufgaben

1

Steigungswinkel

An welchen Punkten hat die Funktion $ f(x) = 2x^3 -4x $ die Steigung 5 und an welchen Punkten den Steigungswinkel 45°?

2

Schnittwinkel

Bestimmen Sie den Schnittwinkel für $ f(x) = x^2 + 2 $ und $ g(x) = 4x $.

3

Tangentengleichung

Wie lautet die Tangentengleichung für $ f(x) = \frac{1}{3} x^3 - 1 $ an der Stelle $ x = 3 $?

4

Leiten Sie die folgenden Funktionen jeweils einmal ab.

$ f(x) = x^7+2x^6+(x+2)^3-3 $

$ f(x) = 0,5x^4 + x^{-5} + (x-0,2)^3 - 3$

$ f(x) = x^{12} + 21x^5 + (x-1)^4 - 3 $

5

$ g(x) = ax^b - 16x $

$ g(x) = cx^d + 4x $

$ g(x) = ab^c + xyz $

6

$ h(x) = -\frac{5}{x^4} - \sqrt{x^6} - \frac{1}{\sqrt[5]{x^2}} $

$ h(x) = \frac{5}{x^2} - \sqrt[3]{x^4} - \frac{1}{\sqrt[3]{x^2}}$

$ h(x) = \frac{5}{x^{3a}} - \sqrt[b]{x^c} - \frac{1}{\sqrt[3a]{x^2}} $

7


Bestimmen Sie jeweils Steigung, Steigungswinkel und die entsprechende Tangentengleichung an den Stellen $ x_1 $ und $ x_2 $.


$ f(x) = 3x^3 + 6x^2,\qquad x_1 = 1, x_2 = 0 $

8

$ f(x) = 4x^3 - 10x^2 + 2,\qquad x_1 = 2, x_2 = 0 $

9

$ f(x) = 2x^3 - x^2 + 4, \qquad x_1 = -1, x_2 = 0 $


Prüfen Sie an welchen Stellen sich die folgenden Funktionen berühren oder schneiden und bestimmen Sie ggf. Schnittwinkel oder Berührtangente.


$ f(x) = 2x^{-1}-1, g(x) = 2-x^2$

10

$ f(x) = 2(x+1)^2+2, g(x) = -0,5(x+1)^3 +2$

11

$ f(x) = (x+1)^2 + 3, g(x) = -(x+1)^3 +3$

PDF zum Drucken

Weitere Arbeitsblätter

Prozent- und Zinsrechnung | MSA

18 min, 2 Aufgaben #5102

Zwei originale Aufgaben aus Abschlussprüfungen für den mittleren Schulabschluss (MSA) aus Berlin. Die Rechnungen sind an sich einfach. Die Schwierigkeit besteht vor allem darin die Rechnungen aus den Textaufgaben zu extrahieren.

Hemden mit Mängeln Abitur LK Berlin 2011

32 min, 6 Aufgaben #1720

Original Abiturprüfung für den Leistungskurs aus Berlin. Die Aufgabe dreht sich rund um Hypothesentests. Kumulierte Binomialverteilung und Standardnormalverteilung, sowie gesunder Menschenverstand werden gebraucht.

Vermischte Übungen MSA

36 min, 6 Aufgaben #1290

Textgleichungen, Gleichungen mit vielen Klammern, Gleichungssysteme, Textaufgaben zu Körperberechnungen und Wahrscheinlichkeiten sind Inhalt dieses Arbeitsblattes. Anspruchsvolle Aufgaben quer durchs Beet.

Klammern auflösen

56 min, 9 Aufgaben #3337

Alle Möglichkeiten von Klammern auf einem Blatt. Mit diesen Übungen kann beim Auflösen von Klammern gar nichts mehr schief laufen.

Wichtige Formeln im Gebäudeenergiegesetz

0 min, 4 Aufgaben #PQUV

In diesem Arbeitsblatt werden die grundlegenden Formeln zur Berechnung der wichtigsten Kennzahlen im Gebäudeenergiegesetz (GEG) vorgestellt. Sie erhalten die notwendigen Formeln und Erklärungen, um den Primärenergiebedarf, den Transmissionswärmeverlust, den Erneuerbare-Energien-Anteil und den U-Wert zu verstehen und anzuwenden. Diese Kennzahlen sind entscheidend für die Beurteilung der Energieeffizienz von Gebäuden und für die Umsetzung der Vorgaben des GEG.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum