Einleitung
Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion.
Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann.
Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.
92 Minuten Erklärungen in 12 Aufgaben von Koonys Schule.
Aufgaben
Steigungswinkel
An welchen Punkten hat die Funktion $ f(x) = 2x^3 -4x $ die Steigung 5 und an welchen Punkten den Steigungswinkel 45°?
Tangentengleichung
Wie lautet die Tangentengleichung für $ f(x) = \frac{1}{3} x^3 - 1 $ an der Stelle $ x = 3 $?
Leiten Sie die folgenden Funktionen jeweils einmal ab.
$ f(x) = x^7+2x^6+(x+2)^3-3 $
$ f(x) = 0,5x^4 + x^{-5} + (x-0,2)^3 - 3$
$ f(x) = x^{12} + 21x^5 + (x-1)^4 - 3 $
$ h(x) = -\frac{5}{x^4} - \sqrt{x^6} - \frac{1}{\sqrt[5]{x^2}} $
$ h(x) = \frac{5}{x^2} - \sqrt[3]{x^4} - \frac{1}{\sqrt[3]{x^2}}$
$ h(x) = \frac{5}{x^{3a}} - \sqrt[b]{x^c} - \frac{1}{\sqrt[3a]{x^2}} $
Bestimmen Sie jeweils Steigung, Steigungswinkel und die entsprechende Tangentengleichung an den Stellen $ x_1 $ und $ x_2 $.
$ f(x) = 3x^3 + 6x^2,\qquad x_1 = 1, x_2 = 0 $
Weitere Arbeitsblätter
Klausurvorbereitung - Analysis - NRW
16 min, 3 Aufgaben #1581Beispielaufgaben für die zentralen Klausuren aus Nordrhein-Westfalen vom Schulministerium. Es wird vor allem das Verständnis der Ableitungsfunktion geprüft. Wachstumsgeschwindigkeiten, Funktionsgleichungen von Tangenten und Skizzen kommen vor.
Einführung Terme
65 min, 8 Aufgaben #2826Erste Aufgaben zu Termen. Termwerte berechen, Terme vergleichen und Textgleichungen in beide Richtungen: sowohl Gleichungen aus Texten aufstellen aber auch Texte basierend auf Gleichungen verfassen. Die Hälfte der Aufgaben beschäftigt sich mit dem Zusammenfassen von Termen.
Ebenen - Übungsaufgaben
52 min, 6 Aufgaben #1933Verschiedene Übungen zu Ebenen. Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.
Stammfunktionen und Flächeninhalte
76 min, 8 Aufgaben #8010Wie für das Thema üblich werden zunächst einfache Polynomfunktionen integriert und dann schwierigere Funktionen bei denen zunächst Potenz- und Wurzelgesetze angewendet werden müssen. Der Aufgabentyp mit gegebener Ableitung und einem Punkt die Ausgangsfunktion zu bestimmen ist auch dabei und die zweite Hälfte der Aufgaben behandelt die Flächenberechnung zwischen Graph und x-Achse. Dabei müssen zuerst die Nullstellen bestimmt werden. :)