Einleitung

Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion.
Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann.
Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.

92 Minuten Erklärungen in 12 Aufgaben von Koonys Schule.

Aufgaben

1

Steigungswinkel

An welchen Punkten hat die Funktion $ f(x) = 2x^3 -4x $ die Steigung 5 und an welchen Punkten den Steigungswinkel 45°?

2

Schnittwinkel

Bestimmen Sie den Schnittwinkel für $ f(x) = x^2 + 2 $ und $ g(x) = 4x $.

3

Tangentengleichung

Wie lautet die Tangentengleichung für $ f(x) = \frac{1}{3} x^3 - 1 $ an der Stelle $ x = 3 $?

4

Leiten Sie die folgenden Funktionen jeweils einmal ab.

$ f(x) = x^7+2x^6+(x+2)^3-3 $

$ f(x) = 0,5x^4 + x^{-5} + (x-0,2)^3 - 3$

$ f(x) = x^{12} + 21x^5 + (x-1)^4 - 3 $

5

$ g(x) = ax^b - 16x $

$ g(x) = cx^d + 4x $

$ g(x) = ab^c + xyz $

6

$ h(x) = -\frac{5}{x^4} - \sqrt{x^6} - \frac{1}{\sqrt[5]{x^2}} $

$ h(x) = \frac{5}{x^2} - \sqrt[3]{x^4} - \frac{1}{\sqrt[3]{x^2}}$

$ h(x) = \frac{5}{x^{3a}} - \sqrt[b]{x^c} - \frac{1}{\sqrt[3a]{x^2}} $

7


Bestimmen Sie jeweils Steigung, Steigungswinkel und die entsprechende Tangentengleichung an den Stellen $ x_1 $ und $ x_2 $.


$ f(x) = 3x^3 + 6x^2,\qquad x_1 = 1, x_2 = 0 $

8

$ f(x) = 4x^3 - 10x^2 + 2,\qquad x_1 = 2, x_2 = 0 $

9

$ f(x) = 2x^3 - x^2 + 4, \qquad x_1 = -1, x_2 = 0 $


Prüfen Sie an welchen Stellen sich die folgenden Funktionen berühren oder schneiden und bestimmen Sie ggf. Schnittwinkel oder Berührtangente.


$ f(x) = 2x^{-1}-1, g(x) = 2-x^2$

10

$ f(x) = 2(x+1)^2+2, g(x) = -0,5(x+1)^3 +2$

11

$ f(x) = (x+1)^2 + 3, g(x) = -(x+1)^3 +3$

PDF zum Drucken

Weitere Arbeitsblätter

Textgleichungen mit Brüchen für Profis 3v3

56 min, 8 Aufgaben #1343

Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.

Bernoulli-Ketten

43 min, 4 Aufgaben #1700

Es gibt vier grundlegende Aufgabentypen bei Bernoulli-Ketten. Diese werden hier einfach straightforward geübt.

Terme vereinfachen

35 min, 4 Aufgaben #2832

Übungen zum Vereinfachen von Termen durch die vier Grundrechenarten: Addition, Subtraktion, Multiplikation und Division. Unter anderem müssen gleichartige Glieder zusammengefasst und Klammern aufgelöst werden.

Übersicht e-Funktionen ableiten

69 min, 7 Aufgaben #6600

Schritt für Schritt werden die verschiedenen Ableitungsregeln bei e-Funktionen gezeigt und es gibt Aufgaben mit Kombinationen dieser Regeln (Konstantenregel, Faktorregel, Produktregel, Kettenregel). Das Arbeitsblatt endet mit einer typischen Kurvendiskussion über eine e-Funktion.

Anwendungsaufgaben radioaktiver Zerfall

57 min, 5 Aufgaben #6543

Textaufgaben über Stoffe, die exponentiell Zerfallen. Wertetabellen, Prozente und Halbwertszeiten kommen unter anderem vor. Es sind im Wesentlichen verschiedene Aufgaben zu Exponentialfunktionen deren Wachstumsfaktor kleiner als 1 ist.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum