Einleitung

Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion.
Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann.
Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.

92 Minuten Erklärungen in 12 Aufgaben von Koonys Schule.

Aufgaben

1

Steigungswinkel

An welchen Punkten hat die Funktion $ f(x) = 2x^3 -4x $ die Steigung 5 und an welchen Punkten den Steigungswinkel 45°?

2

Schnittwinkel

Bestimmen Sie den Schnittwinkel für $ f(x) = x^2 + 2 $ und $ g(x) = 4x $.

3

Tangentengleichung

Wie lautet die Tangentengleichung für $ f(x) = \frac{1}{3} x^3 - 1 $ an der Stelle $ x = 3 $?

4

Leiten Sie die folgenden Funktionen jeweils einmal ab.

$ f(x) = x^7+2x^6+(x+2)^3-3 $

$ f(x) = 0,5x^4 + x^{-5} + (x-0,2)^3 - 3$

$ f(x) = x^{12} + 21x^5 + (x-1)^4 - 3 $

5

$ g(x) = ax^b - 16x $

$ g(x) = cx^d + 4x $

$ g(x) = ab^c + xyz $

6

$ h(x) = -\frac{5}{x^4} - \sqrt{x^6} - \frac{1}{\sqrt[5]{x^2}} $

$ h(x) = \frac{5}{x^2} - \sqrt[3]{x^4} - \frac{1}{\sqrt[3]{x^2}}$

$ h(x) = \frac{5}{x^{3a}} - \sqrt[b]{x^c} - \frac{1}{\sqrt[3a]{x^2}} $

7


Bestimmen Sie jeweils Steigung, Steigungswinkel und die entsprechende Tangentengleichung an den Stellen $ x_1 $ und $ x_2 $.


$ f(x) = 3x^3 + 6x^2,\qquad x_1 = 1, x_2 = 0 $

8

$ f(x) = 4x^3 - 10x^2 + 2,\qquad x_1 = 2, x_2 = 0 $

9

$ f(x) = 2x^3 - x^2 + 4, \qquad x_1 = -1, x_2 = 0 $


Prüfen Sie an welchen Stellen sich die folgenden Funktionen berühren oder schneiden und bestimmen Sie ggf. Schnittwinkel oder Berührtangente.


$ f(x) = 2x^{-1}-1, g(x) = 2-x^2$

10

$ f(x) = 2(x+1)^2+2, g(x) = -0,5(x+1)^3 +2$

11

$ f(x) = (x+1)^2 + 3, g(x) = -(x+1)^3 +3$

PDF zum Drucken

Weitere Arbeitsblätter

Diagnosetest konstruieren und argumentieren

36 min, 5 Aufgaben #4025

Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.

Strahlensätze *

27 min, 3 Aufgaben #4181

Die Strahlensätze werden zunächst an klassischen Aufgaben mit gegebener Skizze gezeigt und im Anschluss an Textaufgaben gefestigt.

Klammern auflösen

35 min, 8 Aufgaben #3336

Das Vereinfachen von Termen mit Klammern wird Stück für Stück gezeigt. Mit dabei sind Minusklammern, das einfache und das doppelte Distributivgesetz. Nach den Aufgaben ist man fachlich soweit sich als nächstes an die binomischen Formeln vagen zu können.

Brüche kürzen und erweitern

64 min, 6 Aufgaben #0607

Das kleine Einmaleins wird hier sehr wichtig: Brüche kürzen und erweitern. Dazu stellt dieses Arbeitsblatt Aufgaben zur Verfügung.

Klassenarbeit binomische Formeln

33 min, 8 Aufgaben #3132

Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum