Einleitung

Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion.
Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann.
Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.

92 Minuten Erklärungen in 12 Aufgaben von Koonys Schule.

Aufgaben

1

Steigungswinkel

An welchen Punkten hat die Funktion $ f(x) = 2x^3 -4x $ die Steigung 5 und an welchen Punkten den Steigungswinkel 45°?

2

Schnittwinkel

Bestimmen Sie den Schnittwinkel für $ f(x) = x^2 + 2 $ und $ g(x) = 4x $.

3

Tangentengleichung

Wie lautet die Tangentengleichung für $ f(x) = \frac{1}{3} x^3 - 1 $ an der Stelle $ x = 3 $?

4

Leiten Sie die folgenden Funktionen jeweils einmal ab.

$ f(x) = x^7+2x^6+(x+2)^3-3 $

$ f(x) = 0,5x^4 + x^{-5} + (x-0,2)^3 - 3$

$ f(x) = x^{12} + 21x^5 + (x-1)^4 - 3 $

5

$ g(x) = ax^b - 16x $

$ g(x) = cx^d + 4x $

$ g(x) = ab^c + xyz $

6

$ h(x) = -\frac{5}{x^4} - \sqrt{x^6} - \frac{1}{\sqrt[5]{x^2}} $

$ h(x) = \frac{5}{x^2} - \sqrt[3]{x^4} - \frac{1}{\sqrt[3]{x^2}}$

$ h(x) = \frac{5}{x^{3a}} - \sqrt[b]{x^c} - \frac{1}{\sqrt[3a]{x^2}} $

7


Bestimmen Sie jeweils Steigung, Steigungswinkel und die entsprechende Tangentengleichung an den Stellen $ x_1 $ und $ x_2 $.


$ f(x) = 3x^3 + 6x^2,\qquad x_1 = 1, x_2 = 0 $

8

$ f(x) = 4x^3 - 10x^2 + 2,\qquad x_1 = 2, x_2 = 0 $

9

$ f(x) = 2x^3 - x^2 + 4, \qquad x_1 = -1, x_2 = 0 $


Prüfen Sie an welchen Stellen sich die folgenden Funktionen berühren oder schneiden und bestimmen Sie ggf. Schnittwinkel oder Berührtangente.


$ f(x) = 2x^{-1}-1, g(x) = 2-x^2$

10

$ f(x) = 2(x+1)^2+2, g(x) = -0,5(x+1)^3 +2$

11

$ f(x) = (x+1)^2 + 3, g(x) = -(x+1)^3 +3$

PDF zum Drucken

Weitere Arbeitsblätter

Wochenübung mit Klammern und Gleichungen

29 min, 7 Aufgaben #1234

7 Aufgaben für 7 Tage. Es müssen Klammern aufgelöst, Terme zusammengefasst und vor allem Gleichungen gelöst werden. Dabei treten unter anderem auch mal Brüche, die binomischen Formeln und die pq-Formel mit auf.

Textgleichungen mit Brüchen für Profis 1v3

39 min, 8 Aufgaben #1341

Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.

Klammern auflösen

56 min, 9 Aufgaben #3337

Alle Möglichkeiten von Klammern auf einem Blatt. Mit diesen Übungen kann beim Auflösen von Klammern gar nichts mehr schief laufen.

BBR - Vergleichsarbeit Mathematik

59 min, 14 Aufgaben #2508

Die Vergleichende Arbeit 2015 im Fach Mathematik zum Erwerb der Berufsbildungsreife bzw. des Hauptschulabschlusses. Bearbeitungszeit: 90 Minuten. Zugelassene Hilfsmittel: Formelübersicht und wissenschaftlicher nicht grafikfähiger Standard-Taschenrechner.

Quadratische Funktionen

53 min, 6 Aufgaben #0070

Eine Einführung in quadratische Funktionen. Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen. Ausblick könnte die quadratische Ergänzung sein.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum