Einleitung

Aufgaben quer durch die 9. Klasse für Profis.
Potenzrechnung, Terme, Gleichungen umstellen, Geometrie, Brüche, Maßstäbe, Funktionen und Kombinatorik.
Alles ohne Taschenrechner!
Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

42 Minuten Erklärungen in 11 Aufgaben von Koonys Schule.

Aufgaben

1

Berechne jeweils $ x $.

$ 8^4\cdot 4^4 = 2^x $

$ \sqrt{\frac{1}{a^{-8}}} = a^x$

$ \left(\sin \frac{\pi}{2}\right)^x = 1 $

$ 9 - (x-3)^2 = 9 $

2

Ordne die folgenden Zahlen aufsteigend: $ 1,7 $; $ \frac{322}{200} $; $ -1,\bar{8} $; $ \sqrt{2} $; $ 1\frac{3}{4} $.

3

Gib die Werte der folgenden Terme für $ x = 2 $ und $ y = 4 $ an.

$ 3(x-2) $

$ 4y - (y+1) $

$ \frac{x}{5+y} $

$ (x+2)(y-4) $

4

Stelle die folgenden Gleichungen jeweils nach x um.

$ F = m\cdot x $

$ v = \frac{s}{x} $

$ s = \frac{g}{2}\cdot x^2 $

$ T = 2\pi \cdot \sqrt{\frac{x}{g}} $

5

Warum kann es kein Dreieck geben, für das gilt:
$ \overline{AB} = c = 12\,\mathrm{cm} $, $ \overline{AC} = b = 7\,\mathrm{cm} $ und $ \sphericalangle ABC = 110^\circ $?

6

Welche der folgenden Aussagen ist wahr, welche falsch? Begründe jeweils.

Es gibt Dreiecke, die gleichschenklig und gleichzeitig rechtwinklig sind.

Jedes gleichschenklige Dreieck, dessen Basis doppelt so lang ist wie ein Schenkel, ist stumpfwinklig.

Für jedes Dreieck $ ABC $ mit $ \overline{AB} = \overline{BC} = 3\,\mathrm{cm} $ gilt: $ 0\,\mathrm{cm} < \overline{AC} < 6\,\mathrm{cm} $.

7

Bei einer Fahrzeugkontrolle weisen $ \frac{1}{3} $ der Motorräder, 30% der Pkw und $ \frac{3}{8} $ der Lkw Mängel auf.

Bei welcher Fahrzeugart gab es die wenigsten Mängel?

8

Eine Landkarte hat den Maßstab 1:200000.

Wie viel Kilometer in der Wirklichkeit entspricht $ 1\,\mathrm{cm} $ auf der Karte?

9

Gib jeweils eine sinnvolle Einheit an:

Grundfläche deiner Schule

Rauminhalt einer Zahnpastatube

10

Stelle die Funktion $ y = f(x) = x^2 - 9 $ in einem rechtwinkligen Koordinatensystem grafisch dar und ermittle die Nullstellen der Funktion.

11

Max, Ben, Jan und Lea rutschen im Schwimmbad nacheinander auf einer Wasserrutsche in zufälliger Reihenfolge.

Wie viele Möglichkeiten gibt es dafür?

Wie viele Möglichkeiten gibt es dafür, wenn Max immer zuerst rutscht?

Wie viele Möglichkeiten gibt es dafür, wenn Lea immer zuletzt rutscht?

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 9 BBR


Weitere Arbeitsblätter

Arbeit - ganzrationale Funktionen

49 min, 3 Aufgaben #1520

Klassenarbeit über ganzrationale Funktionen mit 55 erreichbaren Punkten.

Textaufgaben mit mehreren Unbekannten

46 min, 11 Aufgaben #1336

Elf Textaufgaben bei denen immer zunächst zwei Gleichungen mit zwei Unbekannten aufgestellt und dann gelöst werden müssen.

Kegel, Pyramide, Kugel

27 min, 5 Aufgaben #9540

Die Formeln zur Oberflächen- und Volumenberechnung bei Kegeln, Pyramiden und Kugel kommen zur Anwendung. Es kommt dabei u.a. auch der Dreisatz sowie die Dichte-Formel zur Anwendung.

kgV und ggT

50 min, 6 Aufgaben #0010

Primfaktorzerlegung, größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches nimmt die Hälfte des Blattes ein. Die andere Hälfte sind Anwendungsaufgaben.

Übungen - konstruieren und argumentieren

69 min, 8 Aufgaben #4030

Aufgaben zur Konstruktion von Dreiecken samt Inkreis, Umkreis und Schwerpunkt, sowie besondere Vierecke wie Raute und Drachenviereck. Alle schön verpackt in Textaufgaben.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum