Einleitung

Aufgaben quer durch die 9. Klasse für Profis.
Potenzrechnung, Terme, Gleichungen umstellen, Geometrie, Brüche, Maßstäbe, Funktionen und Kombinatorik.
Alles ohne Taschenrechner!
Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

42 Minuten Erklärungen in 11 Aufgaben von Koonys Schule.

Aufgaben

1

Berechne jeweils $ x $.

$ 8^4\cdot 4^4 = 2^x $

$ \sqrt{\frac{1}{a^{-8}}} = a^x$

$ \left(\sin \frac{\pi}{2}\right)^x = 1 $

$ 9 - (x-3)^2 = 9 $

2

Ordne die folgenden Zahlen aufsteigend: $ 1,7 $; $ \frac{322}{200} $; $ -1,\bar{8} $; $ \sqrt{2} $; $ 1\frac{3}{4} $.

3

Gib die Werte der folgenden Terme für $ x = 2 $ und $ y = 4 $ an.

$ 3(x-2) $

$ 4y - (y+1) $

$ \frac{x}{5+y} $

$ (x+2)(y-4) $

4

Stelle die folgenden Gleichungen jeweils nach x um.

$ F = m\cdot x $

$ v = \frac{s}{x} $

$ s = \frac{g}{2}\cdot x^2 $

$ T = 2\pi \cdot \sqrt{\frac{x}{g}} $

5

Warum kann es kein Dreieck geben, für das gilt:
$ \overline{AB} = c = 12\,\mathrm{cm} $, $ \overline{AC} = b = 7\,\mathrm{cm} $ und $ \sphericalangle ABC = 110^\circ $?

6

Welche der folgenden Aussagen ist wahr, welche falsch? Begründe jeweils.

Es gibt Dreiecke, die gleichschenklig und gleichzeitig rechtwinklig sind.

Jedes gleichschenklige Dreieck, dessen Basis doppelt so lang ist wie ein Schenkel, ist stumpfwinklig.

Für jedes Dreieck $ ABC $ mit $ \overline{AB} = \overline{BC} = 3\,\mathrm{cm} $ gilt: $ 0\,\mathrm{cm} < \overline{AC} < 6\,\mathrm{cm} $.

7

Bei einer Fahrzeugkontrolle weisen $ \frac{1}{3} $ der Motorräder, 30% der Pkw und $ \frac{3}{8} $ der Lkw Mängel auf.

Bei welcher Fahrzeugart gab es die wenigsten Mängel?

8

Eine Landkarte hat den Maßstab 1:200000.

Wie viel Kilometer in der Wirklichkeit entspricht $ 1\,\mathrm{cm} $ auf der Karte?

9

Gib jeweils eine sinnvolle Einheit an:

Grundfläche deiner Schule

Rauminhalt einer Zahnpastatube

10

Stelle die Funktion $ y = f(x) = x^2 - 9 $ in einem rechtwinkligen Koordinatensystem grafisch dar und ermittle die Nullstellen der Funktion.

11

Max, Ben, Jan und Lea rutschen im Schwimmbad nacheinander auf einer Wasserrutsche in zufälliger Reihenfolge.

Wie viele Möglichkeiten gibt es dafür?

Wie viele Möglichkeiten gibt es dafür, wenn Max immer zuerst rutscht?

Wie viele Möglichkeiten gibt es dafür, wenn Lea immer zuletzt rutscht?

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 9 BBR


Weitere Arbeitsblätter

Arbeit - quadratische Funktionen

39 min, 4 Aufgaben #0069

Eine originale Arbeit mit 46 erreichbaren Punkten zum Thema quadratische Funktionen. Mit dabei: Linearfaktor, Satz von Vieta, Scheitelpunktsform, Optimierungsproblem und Imbiss Bronko.

Anteile, Bruchteile, Ausgangsgröße und Einheiten

48 min, 6 Aufgaben #0506

Wenn es um Anteile geht gibt es drei grundlegende Aufgabentypen. Jeweils muss der Groschen dabei fallen, damit man es auch wirklich versteht und weitere mathematische Konzepte erschließbar werden. Passend zu der Thematik beschäftigt sich die andere Hälfte des Arbeitsblattes mit der Umrechnung von Einheiten.

Hypothesentests - Signifikanztests

68 min, 5 Aufgaben #1740

Aufgaben bei denen Nullhypothesen aufgestellt und mit Entscheidungsregeln angenommen oder verworfen werden. Es kommen einseitige und zweiseitige Signifikanztests vor.

Pythagoras - Anwendungen

49 min, 6 Aufgaben #0040

Anwendungsaufgaben mit dem Satz des Pythagoras. Unter anderem werden Diagonale von Quadrat und Würfel berechnet, Berechnungen am gleichschenkligen Dreieck, Pyramide und Walmdach durchgeführt u.v.m.

Diagnosetest konstruieren und argumentieren

36 min, 5 Aufgaben #4025

Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum