Einleitung

Aufgaben quer durch die 9. Klasse für Profis.
Potenzrechnung, Terme, Gleichungen umstellen, Geometrie, Brüche, Maßstäbe, Funktionen und Kombinatorik.
Alles ohne Taschenrechner!
Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

42 Minuten Erklärungen in 11 Aufgaben von Koonys Schule.

Aufgaben

1

Berechne jeweils $ x $.

$ 8^4\cdot 4^4 = 2^x $

$ \sqrt{\frac{1}{a^{-8}}} = a^x$

$ \left(\sin \frac{\pi}{2}\right)^x = 1 $

$ 9 - (x-3)^2 = 9 $

2

Ordne die folgenden Zahlen aufsteigend: $ 1,7 $; $ \frac{322}{200} $; $ -1,\bar{8} $; $ \sqrt{2} $; $ 1\frac{3}{4} $.

3

Gib die Werte der folgenden Terme für $ x = 2 $ und $ y = 4 $ an.

$ 3(x-2) $

$ 4y - (y+1) $

$ \frac{x}{5+y} $

$ (x+2)(y-4) $

4

Stelle die folgenden Gleichungen jeweils nach x um.

$ F = m\cdot x $

$ v = \frac{s}{x} $

$ s = \frac{g}{2}\cdot x^2 $

$ T = 2\pi \cdot \sqrt{\frac{x}{g}} $

5

Warum kann es kein Dreieck geben, für das gilt:
$ \overline{AB} = c = 12\,\mathrm{cm} $, $ \overline{AC} = b = 7\,\mathrm{cm} $ und $ \sphericalangle ABC = 110^\circ $?

6

Welche der folgenden Aussagen ist wahr, welche falsch? Begründe jeweils.

Es gibt Dreiecke, die gleichschenklig und gleichzeitig rechtwinklig sind.

Jedes gleichschenklige Dreieck, dessen Basis doppelt so lang ist wie ein Schenkel, ist stumpfwinklig.

Für jedes Dreieck $ ABC $ mit $ \overline{AB} = \overline{BC} = 3\,\mathrm{cm} $ gilt: $ 0\,\mathrm{cm} < \overline{AC} < 6\,\mathrm{cm} $.

7

Bei einer Fahrzeugkontrolle weisen $ \frac{1}{3} $ der Motorräder, 30% der Pkw und $ \frac{3}{8} $ der Lkw Mängel auf.

Bei welcher Fahrzeugart gab es die wenigsten Mängel?

8

Eine Landkarte hat den Maßstab 1:200000.

Wie viel Kilometer in der Wirklichkeit entspricht $ 1\,\mathrm{cm} $ auf der Karte?

9

Gib jeweils eine sinnvolle Einheit an:

Grundfläche deiner Schule

Rauminhalt einer Zahnpastatube

10

Stelle die Funktion $ y = f(x) = x^2 - 9 $ in einem rechtwinkligen Koordinatensystem grafisch dar und ermittle die Nullstellen der Funktion.

11

Max, Ben, Jan und Lea rutschen im Schwimmbad nacheinander auf einer Wasserrutsche in zufälliger Reihenfolge.

Wie viele Möglichkeiten gibt es dafür?

Wie viele Möglichkeiten gibt es dafür, wenn Max immer zuerst rutscht?

Wie viele Möglichkeiten gibt es dafür, wenn Lea immer zuletzt rutscht?

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 9 BBR


Weitere Arbeitsblätter

Textgleichungen mit Brüchen für Profis 2v3

31 min, 7 Aufgaben #1342

Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.

Übungen - konstruieren und argumentieren

69 min, 8 Aufgaben #4030

Aufgaben zur Konstruktion von Dreiecken samt Inkreis, Umkreis und Schwerpunkt, sowie besondere Vierecke wie Raute und Drachenviereck. Alle schön verpackt in Textaufgaben.

Diagnosetest konstruieren und argumentieren

36 min, 5 Aufgaben #4025

Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.

Abschlussarbeit Klasse 9 ohne Taschenrechner

39 min, 8 Aufgaben #2850

Aufgaben quer durch die 9. Klasse für Profis. Ohne Taschenrechner knifflige Terme berechnen. Außerdem Prozentrechnung, Flächeninhalte, Gleichungen umstellen, Funktionen, Textgleichungen, Strahlensätze und Wahrscheinlichkeiten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Strahlensätze *

27 min, 3 Aufgaben #4181

Die Strahlensätze werden zunächst an klassischen Aufgaben mit gegebener Skizze gezeigt und im Anschluss an Textaufgaben gefestigt.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum