Einleitung
Aufgaben quer durch die 9. Klasse für Profis.
Potenzrechnung, Terme, Gleichungen umstellen, Geometrie, Brüche, Maßstäbe, Funktionen und Kombinatorik.
Alles ohne Taschenrechner!
Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
42 Minuten Erklärungen in 11 Aufgaben von Koonys Schule.
Aufgaben
Berechne jeweils $ x $.
$ 8^4\cdot 4^4 = 2^x $
$ \sqrt{\frac{1}{a^{-8}}} = a^x$
$ \left(\sin \frac{\pi}{2}\right)^x = 1 $
$ 9 - (x-3)^2 = 9 $
Ordne die folgenden Zahlen aufsteigend: $ 1,7 $; $ \frac{322}{200} $; $ -1,\bar{8} $; $ \sqrt{2} $; $ 1\frac{3}{4} $.
Gib die Werte der folgenden Terme für $ x = 2 $ und $ y = 4 $ an.
$ 3(x-2) $
$ 4y - (y+1) $
$ \frac{x}{5+y} $
$ (x+2)(y-4) $
Stelle die folgenden Gleichungen jeweils nach x um.
$ F = m\cdot x $
$ v = \frac{s}{x} $
$ s = \frac{g}{2}\cdot x^2 $
$ T = 2\pi \cdot \sqrt{\frac{x}{g}} $
Warum kann es kein Dreieck geben, für das gilt:
$ \overline{AB} = c = 12\,\mathrm{cm} $, $ \overline{AC} = b = 7\,\mathrm{cm} $ und $ \sphericalangle ABC = 110^\circ $?
Welche der folgenden Aussagen ist wahr, welche falsch? Begründe jeweils.
Es gibt Dreiecke, die gleichschenklig und gleichzeitig rechtwinklig sind.
Jedes gleichschenklige Dreieck, dessen Basis doppelt so lang ist wie ein Schenkel, ist stumpfwinklig.
Für jedes Dreieck $ ABC $ mit $ \overline{AB} = \overline{BC} = 3\,\mathrm{cm} $ gilt: $ 0\,\mathrm{cm} < \overline{AC} < 6\,\mathrm{cm} $.
Bei einer Fahrzeugkontrolle weisen $ \frac{1}{3} $ der Motorräder, 30% der Pkw und $ \frac{3}{8} $ der Lkw Mängel auf.
Bei welcher Fahrzeugart gab es die wenigsten Mängel?
Eine Landkarte hat den Maßstab 1:200000.
Wie viel Kilometer in der Wirklichkeit entspricht $ 1\,\mathrm{cm} $ auf der Karte?
Stelle die Funktion $ y = f(x) = x^2 - 9 $ in einem rechtwinkligen Koordinatensystem grafisch dar und ermittle die Nullstellen der Funktion.
Max, Ben, Jan und Lea rutschen im Schwimmbad nacheinander auf einer Wasserrutsche in zufälliger Reihenfolge.
Wie viele Möglichkeiten gibt es dafür?
Wie viele Möglichkeiten gibt es dafür, wenn Max immer zuerst rutscht?
Wie viele Möglichkeiten gibt es dafür, wenn Lea immer zuletzt rutscht?
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Gleichungen in Texten
54 min, 11 Aufgaben #1337Zwei Gleichungen aufstellen und dann lösen. Immer. Zum Teil sehr knifflig!
Abzählverfahren
35 min, 6 Aufgaben #1651Verschiedene Aufgaben mit Würfel-Würfen und Zahlen mit ihren Ziffern. Gefragt ist jedes mal nach der Wahrscheinlichkeit, dass ein bestimmtes Ereignis passiert. Schwierigkeit liegt darin herauszufinden, was die Anzahl aller Ergebnisse und die Anzahl der günstigen Ergebnisse ist.
Übungen zu kombinatorischen Abzählverfahren
29 min, 8 Aufgaben #1648Ob mit oder ohne Reihenfolge und mit oder ohne Wiederholung: die Frage, die sich stellt, ist immer die gleiche: wie viele Möglichkeiten gibt es? Bei den Aufgaben kommt man noch häufig durch Abzählen zur Lösung.
Klassenarbeit binomische Formeln
33 min, 8 Aufgaben #3132Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.
Diagnosetest konstruieren und argumentieren
36 min, 5 Aufgaben #4025Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.