Einleitung

Aufgaben quer durch die 9. Klasse für Profis.
Potenzrechnung, Terme, Gleichungen umstellen, Geometrie, Brüche, Maßstäbe, Funktionen und Kombinatorik.
Alles ohne Taschenrechner!
Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

42 Minuten Erklärungen in 11 Aufgaben von Koonys Schule.

Aufgaben

1

Berechne jeweils $ x $.

$ 8^4\cdot 4^4 = 2^x $

$ \sqrt{\frac{1}{a^{-8}}} = a^x$

$ \left(\sin \frac{\pi}{2}\right)^x = 1 $

$ 9 - (x-3)^2 = 9 $

2

Ordne die folgenden Zahlen aufsteigend: $ 1,7 $; $ \frac{322}{200} $; $ -1,\bar{8} $; $ \sqrt{2} $; $ 1\frac{3}{4} $.

3

Gib die Werte der folgenden Terme für $ x = 2 $ und $ y = 4 $ an.

$ 3(x-2) $

$ 4y - (y+1) $

$ \frac{x}{5+y} $

$ (x+2)(y-4) $

4

Stelle die folgenden Gleichungen jeweils nach x um.

$ F = m\cdot x $

$ v = \frac{s}{x} $

$ s = \frac{g}{2}\cdot x^2 $

$ T = 2\pi \cdot \sqrt{\frac{x}{g}} $

5

Warum kann es kein Dreieck geben, für das gilt:
$ \overline{AB} = c = 12\,\mathrm{cm} $, $ \overline{AC} = b = 7\,\mathrm{cm} $ und $ \sphericalangle ABC = 110^\circ $?

6

Welche der folgenden Aussagen ist wahr, welche falsch? Begründe jeweils.

Es gibt Dreiecke, die gleichschenklig und gleichzeitig rechtwinklig sind.

Jedes gleichschenklige Dreieck, dessen Basis doppelt so lang ist wie ein Schenkel, ist stumpfwinklig.

Für jedes Dreieck $ ABC $ mit $ \overline{AB} = \overline{BC} = 3\,\mathrm{cm} $ gilt: $ 0\,\mathrm{cm} < \overline{AC} < 6\,\mathrm{cm} $.

7

Bei einer Fahrzeugkontrolle weisen $ \frac{1}{3} $ der Motorräder, 30% der Pkw und $ \frac{3}{8} $ der Lkw Mängel auf.

Bei welcher Fahrzeugart gab es die wenigsten Mängel?

8

Eine Landkarte hat den Maßstab 1:200000.

Wie viel Kilometer in der Wirklichkeit entspricht $ 1\,\mathrm{cm} $ auf der Karte?

9

Gib jeweils eine sinnvolle Einheit an:

Grundfläche deiner Schule

Rauminhalt einer Zahnpastatube

10

Stelle die Funktion $ y = f(x) = x^2 - 9 $ in einem rechtwinkligen Koordinatensystem grafisch dar und ermittle die Nullstellen der Funktion.

11

Max, Ben, Jan und Lea rutschen im Schwimmbad nacheinander auf einer Wasserrutsche in zufälliger Reihenfolge.

Wie viele Möglichkeiten gibt es dafür?

Wie viele Möglichkeiten gibt es dafür, wenn Max immer zuerst rutscht?

Wie viele Möglichkeiten gibt es dafür, wenn Lea immer zuletzt rutscht?

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 9 BBR


Weitere Arbeitsblätter

Terme addieren und subtrahieren

43 min, 8 Aufgaben #2828

Terme vereinfachen indem man gleichartige Glieder zusammenfasst und ggf. vorher noch ein paar Klammern auflöst. Auch müssen Terme aufgestellt und Zahlenmauern gelöst werden.

Binomische Formeln

89 min, 11 Aufgaben #3120

Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz). Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen. Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert. Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.

Kreise - Anwendung

59 min, 5 Aufgaben #8890

In verschiedenen Anwendungsaufgaben müssen die Kreisformeln genutzt werden. Umstellen der Formeln, Kreisausschnitte, Prozent- und Geschwindigkeitsrechnung müssen darüber hinaus angewendet werden.

Strahlensätze **

54 min, 6 Aufgaben #4182

Drei Schenkel, verdrehte Skizzen, Erbsen und der Mond sowie Bergspitzen. Das Prinzip ist das Gleiche, aber die Schwierigkeit ist doch um einiges größer als sonst. Das nächste Level an Strahlensatzaufgaben sozusagen.

IT Vorschau-Demnächst

0 min, 4 Aufgaben #7778

Cooles Blatt.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum