Einleitung
Aufgaben quer durch die 9. Klasse für Profis.
Potenzrechnung, Terme, Gleichungen umstellen, Geometrie, Brüche, Maßstäbe, Funktionen und Kombinatorik.
Alles ohne Taschenrechner!
Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
42 Minuten Erklärungen in 11 Aufgaben von Koonys Schule.
Aufgaben
Berechne jeweils $ x $.
$ 8^4\cdot 4^4 = 2^x $
$ \sqrt{\frac{1}{a^{-8}}} = a^x$
$ \left(\sin \frac{\pi}{2}\right)^x = 1 $
$ 9 - (x-3)^2 = 9 $
Ordne die folgenden Zahlen aufsteigend: $ 1,7 $; $ \frac{322}{200} $; $ -1,\bar{8} $; $ \sqrt{2} $; $ 1\frac{3}{4} $.
Gib die Werte der folgenden Terme für $ x = 2 $ und $ y = 4 $ an.
$ 3(x-2) $
$ 4y - (y+1) $
$ \frac{x}{5+y} $
$ (x+2)(y-4) $
Stelle die folgenden Gleichungen jeweils nach x um.
$ F = m\cdot x $
$ v = \frac{s}{x} $
$ s = \frac{g}{2}\cdot x^2 $
$ T = 2\pi \cdot \sqrt{\frac{x}{g}} $
Warum kann es kein Dreieck geben, für das gilt:
$ \overline{AB} = c = 12\,\mathrm{cm} $, $ \overline{AC} = b = 7\,\mathrm{cm} $ und $ \sphericalangle ABC = 110^\circ $?
Welche der folgenden Aussagen ist wahr, welche falsch? Begründe jeweils.
Es gibt Dreiecke, die gleichschenklig und gleichzeitig rechtwinklig sind.
Jedes gleichschenklige Dreieck, dessen Basis doppelt so lang ist wie ein Schenkel, ist stumpfwinklig.
Für jedes Dreieck $ ABC $ mit $ \overline{AB} = \overline{BC} = 3\,\mathrm{cm} $ gilt: $ 0\,\mathrm{cm} < \overline{AC} < 6\,\mathrm{cm} $.
Bei einer Fahrzeugkontrolle weisen $ \frac{1}{3} $ der Motorräder, 30% der Pkw und $ \frac{3}{8} $ der Lkw Mängel auf.
Bei welcher Fahrzeugart gab es die wenigsten Mängel?
Eine Landkarte hat den Maßstab 1:200000.
Wie viel Kilometer in der Wirklichkeit entspricht $ 1\,\mathrm{cm} $ auf der Karte?
Stelle die Funktion $ y = f(x) = x^2 - 9 $ in einem rechtwinkligen Koordinatensystem grafisch dar und ermittle die Nullstellen der Funktion.
Max, Ben, Jan und Lea rutschen im Schwimmbad nacheinander auf einer Wasserrutsche in zufälliger Reihenfolge.
Wie viele Möglichkeiten gibt es dafür?
Wie viele Möglichkeiten gibt es dafür, wenn Max immer zuerst rutscht?
Wie viele Möglichkeiten gibt es dafür, wenn Lea immer zuletzt rutscht?
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Kleine vermischte Übungen - Klasse 10
39 min, 13 Aufgaben #7400Bunt gemischte Textaufgaben zu verschiedenen Themen der 10. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.
Übungen zur Differenzialrechnung
98 min, 8 Aufgaben #1560Typische Aufgaben zur Differenzialrechnung. Also Ableiten, Nullstellen berechnen, Graphen skizzieren, Tangentengleichungen und Schnittwinkel berechnen und natürlich Hoch- und Tiefpunkte bestimmen.
Rechnen mit Dezimalbrüchen
58 min, 10 Aufgaben #0670Viele Aufgaben zu den vier Hauptrechenarten mit Dezimalbrüchen. Schriftlich muss Plus, Minus, Mal und Durch benutzt werden.
Diagnosetest konstruieren und argumentieren
36 min, 5 Aufgaben #4025Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.
Wahrscheinlichkeiten
14 min, 2 Aufgaben #7390Zwei originale Aufgaben der mittleren Schulabschluss Prüfung (MSA) von 2012 und 2014 aus Berlin.