Einleitung
Aufgaben quer durch die 9. Klasse für Profis.
Potenzrechnung, Terme, Gleichungen umstellen, Geometrie, Brüche, Maßstäbe, Funktionen und Kombinatorik.
Alles ohne Taschenrechner!
Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
42 Minuten Erklärungen in 11 Aufgaben von Koonys Schule.
Aufgaben
Berechne jeweils $ x $.
$ 8^4\cdot 4^4 = 2^x $
$ \sqrt{\frac{1}{a^{-8}}} = a^x$
$ \left(\sin \frac{\pi}{2}\right)^x = 1 $
$ 9 - (x-3)^2 = 9 $
Ordne die folgenden Zahlen aufsteigend: $ 1,7 $; $ \frac{322}{200} $; $ -1,\bar{8} $; $ \sqrt{2} $; $ 1\frac{3}{4} $.
Gib die Werte der folgenden Terme für $ x = 2 $ und $ y = 4 $ an.
$ 3(x-2) $
$ 4y - (y+1) $
$ \frac{x}{5+y} $
$ (x+2)(y-4) $
Stelle die folgenden Gleichungen jeweils nach x um.
$ F = m\cdot x $
$ v = \frac{s}{x} $
$ s = \frac{g}{2}\cdot x^2 $
$ T = 2\pi \cdot \sqrt{\frac{x}{g}} $
Warum kann es kein Dreieck geben, für das gilt:
$ \overline{AB} = c = 12\,\mathrm{cm} $, $ \overline{AC} = b = 7\,\mathrm{cm} $ und $ \sphericalangle ABC = 110^\circ $?
Welche der folgenden Aussagen ist wahr, welche falsch? Begründe jeweils.
Es gibt Dreiecke, die gleichschenklig und gleichzeitig rechtwinklig sind.
Jedes gleichschenklige Dreieck, dessen Basis doppelt so lang ist wie ein Schenkel, ist stumpfwinklig.
Für jedes Dreieck $ ABC $ mit $ \overline{AB} = \overline{BC} = 3\,\mathrm{cm} $ gilt: $ 0\,\mathrm{cm} < \overline{AC} < 6\,\mathrm{cm} $.
Bei einer Fahrzeugkontrolle weisen $ \frac{1}{3} $ der Motorräder, 30% der Pkw und $ \frac{3}{8} $ der Lkw Mängel auf.
Bei welcher Fahrzeugart gab es die wenigsten Mängel?
Eine Landkarte hat den Maßstab 1:200000.
Wie viel Kilometer in der Wirklichkeit entspricht $ 1\,\mathrm{cm} $ auf der Karte?
Stelle die Funktion $ y = f(x) = x^2 - 9 $ in einem rechtwinkligen Koordinatensystem grafisch dar und ermittle die Nullstellen der Funktion.
Max, Ben, Jan und Lea rutschen im Schwimmbad nacheinander auf einer Wasserrutsche in zufälliger Reihenfolge.
Wie viele Möglichkeiten gibt es dafür?
Wie viele Möglichkeiten gibt es dafür, wenn Max immer zuerst rutscht?
Wie viele Möglichkeiten gibt es dafür, wenn Lea immer zuletzt rutscht?
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Stammfunktionen und Flächeninhalte
76 min, 8 Aufgaben #8010Wie für das Thema üblich werden zunächst einfache Polynomfunktionen integriert und dann schwierigere Funktionen bei denen zunächst Potenz- und Wurzelgesetze angewendet werden müssen. Der Aufgabentyp mit gegebener Ableitung und einem Punkt die Ausgangsfunktion zu bestimmen ist auch dabei und die zweite Hälfte der Aufgaben behandelt die Flächenberechnung zwischen Graph und x-Achse. Dabei müssen zuerst die Nullstellen bestimmt werden. :)
Textgleichungen mit Brüchen für Profis 2v3
31 min, 7 Aufgaben #1342Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.
Klassenarbeit Wachstum und Zerfall
38 min, 5 Aufgaben #6551Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs. Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.
Weidezelt Abitur GK Berlin 2016
64 min, 6 Aufgaben #1611Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.
Bernoulli-Ketten
43 min, 4 Aufgaben #1700Es gibt vier grundlegende Aufgabentypen bei Bernoulli-Ketten. Diese werden hier einfach straightforward geübt.