Einleitung

Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren.
Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen.
Am Ende noch Übungen bei denen auch Brüche vorkommen.

62 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

Vorbereitung

$ -x+2 = 2x-3 $

$ 7x + 3\cdot(-2x+3) = 14 $

$ 3x+7y-3x+2y=24+3 $

$ x = -2y + 4 $; $ y = -3 $

2

Gleichsetzungsverfahren

$\begin{aligned}[t]
y&=2x-11\\
y&=3x-14
\end{aligned}$

$\begin{aligned}[t]
5y&=2x-1\\
5y&=3x-6
\end{aligned}$

$\begin{aligned}[t]
3p-2q&=11\\
2p-6q&=-12
\end{aligned}$

3

Einsetzungsverfahren

$\begin{aligned}[t]
5x+y&=2\\
y&=7x-22
\end{aligned}$

$\begin{aligned}[t]
7x-3y&=17\\
x&=4y+6
\end{aligned}$

$\begin{aligned}[t]
-4x+7y&=-1\\
7y&=-x+19
\end{aligned}$

4

Additionsverfahren

$\begin{aligned}[t]
-4x+6y&=14\\
4x+3y&=-5
\end{aligned}$

$\begin{aligned}[t]
-x-5y&=-17\\
7x+5y&=-1
\end{aligned}$

$\begin{aligned}[t]
2x-3y&=-13\\
5x+2y&=-4
\end{aligned}$

5

3 Fälle

eine Lösung

$\begin{aligned}[t]
2x-4y&=-2\\
3x+y&=11
\end{aligned}$

keine Lösung

$\begin{aligned}[t]
-x+2y&=4\\
2x-4y&=6
\end{aligned}$

unendlich Lösungen

$\begin{aligned}[t]
2x+y&=-4\\
-6x-3y&=12
\end{aligned}$

6

$\begin{aligned}[t]
6x+4y&=4\\
9x+6y&=5
\end{aligned}$

$\begin{aligned}[t]
x+y&=2\\
9x+4y&=23
\end{aligned}$

$\begin{aligned}[t]
4x-2y&=14\\
6x-3y&=21
\end{aligned}$

7

Übungen

$\begin{aligned}[t]
5y&=\frac{1}{2}x+\frac{1}{3}\\
5y&=\frac{2}{3}x+\frac{1}{6}
\end{aligned}$

$\begin{aligned}[t]
13x-\frac{1}{6}y&=-5\\
\frac{1}{6}y&=5x+9
\end{aligned}$

$\begin{aligned}[t]
\frac{8}{11}x+\frac{3}{4}y&=14\\
\frac{6}{11}x-\frac{1}{2}y&=2
\end{aligned}$

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 8 Gleichungen


Weitere Arbeitsblätter

Mathematische Kompetenzen - Zufall

15 min, 6 Aufgaben #0008

Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.

Klammern auflösen

51 min, 5 Aufgaben #3335

Aufgaben zum Vereinfachen von Termen mit Klammern. Zunächst Terme mit Minusklammern, dann welche mit doppelten Klammern (doppeltes Distributivgesetz). Am Ende, so ganz nebenbei, die binomischen Formeln und der ganze Spaß rückwärts: das Ausklammern.

Teilweises Wurzelziehen - Rationalmachen des Nenners

52 min, 11 Aufgaben #0992

Aufgaben zum teilweisen, auch partiellen, Wurzelziehen mit Zahlen, Variablen und Faktorisieren. Einfache Aufgaben zum Rationalmachen des Nenners.

Binomische Formeln

89 min, 11 Aufgaben #3120

Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz). Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen. Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert. Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.

Brüche kürzen und erweitern

64 min, 6 Aufgaben #0607

Das kleine Einmaleins wird hier sehr wichtig: Brüche kürzen und erweitern. Dazu stellt dieses Arbeitsblatt Aufgaben zur Verfügung.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum