Einleitung

Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren.
Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen.
Am Ende noch Übungen bei denen auch Brüche vorkommen.

62 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

Vorbereitung

$ -x+2 = 2x-3 $

$ 7x + 3\cdot(-2x+3) = 14 $

$ 3x+7y-3x+2y=24+3 $

$ x = -2y + 4 $; $ y = -3 $

2

Gleichsetzungsverfahren

$\begin{aligned}[t]
y&=2x-11\\
y&=3x-14
\end{aligned}$

$\begin{aligned}[t]
5y&=2x-1\\
5y&=3x-6
\end{aligned}$

$\begin{aligned}[t]
3p-2q&=11\\
2p-6q&=-12
\end{aligned}$

3

Einsetzungsverfahren

$\begin{aligned}[t]
5x+y&=2\\
y&=7x-22
\end{aligned}$

$\begin{aligned}[t]
7x-3y&=17\\
x&=4y+6
\end{aligned}$

$\begin{aligned}[t]
-4x+7y&=-1\\
7y&=-x+19
\end{aligned}$

4

Additionsverfahren

$\begin{aligned}[t]
-4x+6y&=14\\
4x+3y&=-5
\end{aligned}$

$\begin{aligned}[t]
-x-5y&=-17\\
7x+5y&=-1
\end{aligned}$

$\begin{aligned}[t]
2x-3y&=-13\\
5x+2y&=-4
\end{aligned}$

5

3 Fälle

eine Lösung

$\begin{aligned}[t]
2x-4y&=-2\\
3x+y&=11
\end{aligned}$

keine Lösung

$\begin{aligned}[t]
-x+2y&=4\\
2x-4y&=6
\end{aligned}$

unendlich Lösungen

$\begin{aligned}[t]
2x+y&=-4\\
-6x-3y&=12
\end{aligned}$

6

$\begin{aligned}[t]
6x+4y&=4\\
9x+6y&=5
\end{aligned}$

$\begin{aligned}[t]
x+y&=2\\
9x+4y&=23
\end{aligned}$

$\begin{aligned}[t]
4x-2y&=14\\
6x-3y&=21
\end{aligned}$

7

Übungen

$\begin{aligned}[t]
5y&=\frac{1}{2}x+\frac{1}{3}\\
5y&=\frac{2}{3}x+\frac{1}{6}
\end{aligned}$

$\begin{aligned}[t]
13x-\frac{1}{6}y&=-5\\
\frac{1}{6}y&=5x+9
\end{aligned}$

$\begin{aligned}[t]
\frac{8}{11}x+\frac{3}{4}y&=14\\
\frac{6}{11}x-\frac{1}{2}y&=2
\end{aligned}$

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 8 Gleichungen


Weitere Arbeitsblätter

Polynomdivision und mittlere Änderungsrate

35 min, 6 Aufgaben #1551

Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.

Ableitungsfunktion

34 min, 8 Aufgaben #1588

Der Differenzenquotient muss gebildet und Funktionen abgeleitet werden. Darüber hinaus muss eine Ausgangsfunktion gezeichnet und Funktionsgleichungen von Ausgangsfunktionen gebildet werden. Eine Aufgabe über die Differenzierbarkeit einer Betragsfunktion an einer bestimmten Stelle ist auch dabei.

Ebenen - Übungsaufgaben

52 min, 6 Aufgaben #1933

Verschiedene Übungen zu Ebenen. Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.

Vermischte Übungen MSA

36 min, 6 Aufgaben #1290

Textgleichungen, Gleichungen mit vielen Klammern, Gleichungssysteme, Textaufgaben zu Körperberechnungen und Wahrscheinlichkeiten sind Inhalt dieses Arbeitsblattes. Anspruchsvolle Aufgaben quer durchs Beet.

Hemden mit Mängeln Abitur LK Berlin 2011

32 min, 6 Aufgaben #1720

Original Abiturprüfung für den Leistungskurs aus Berlin. Die Aufgabe dreht sich rund um Hypothesentests. Kumulierte Binomialverteilung und Standardnormalverteilung, sowie gesunder Menschenverstand werden gebraucht.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum