Einleitung
Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren.
Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen.
Am Ende noch Übungen bei denen auch Brüche vorkommen.
62 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Vorbereitung
$ -x+2 = 2x-3 $
$ 7x + 3\cdot(-2x+3) = 14 $
$ 3x+7y-3x+2y=24+3 $
$ x = -2y + 4 $; $ y = -3 $
Gleichsetzungsverfahren
$\begin{aligned}[t]
y&=2x-11\\
y&=3x-14
\end{aligned}$
$\begin{aligned}[t]
5y&=2x-1\\
5y&=3x-6
\end{aligned}$
$\begin{aligned}[t]
3p-2q&=11\\
2p-6q&=-12
\end{aligned}$
Einsetzungsverfahren
$\begin{aligned}[t]
5x+y&=2\\
y&=7x-22
\end{aligned}$
$\begin{aligned}[t]
7x-3y&=17\\
x&=4y+6
\end{aligned}$
$\begin{aligned}[t]
-4x+7y&=-1\\
7y&=-x+19
\end{aligned}$
Additionsverfahren
$\begin{aligned}[t]
-4x+6y&=14\\
4x+3y&=-5
\end{aligned}$
$\begin{aligned}[t]
-x-5y&=-17\\
7x+5y&=-1
\end{aligned}$
$\begin{aligned}[t]
2x-3y&=-13\\
5x+2y&=-4
\end{aligned}$
3 Fälle
eine Lösung
$\begin{aligned}[t]
2x-4y&=-2\\
3x+y&=11
\end{aligned}$
keine Lösung
$\begin{aligned}[t]
-x+2y&=4\\
2x-4y&=6
\end{aligned}$
unendlich Lösungen
$\begin{aligned}[t]
2x+y&=-4\\
-6x-3y&=12
\end{aligned}$
$\begin{aligned}[t]
6x+4y&=4\\
9x+6y&=5
\end{aligned}$
$\begin{aligned}[t]
x+y&=2\\
9x+4y&=23
\end{aligned}$
$\begin{aligned}[t]
4x-2y&=14\\
6x-3y&=21
\end{aligned}$
Übungen
$\begin{aligned}[t]
5y&=\frac{1}{2}x+\frac{1}{3}\\
5y&=\frac{2}{3}x+\frac{1}{6}
\end{aligned}$
$\begin{aligned}[t]
13x-\frac{1}{6}y&=-5\\
\frac{1}{6}y&=5x+9
\end{aligned}$
$\begin{aligned}[t]
\frac{8}{11}x+\frac{3}{4}y&=14\\
\frac{6}{11}x-\frac{1}{2}y&=2
\end{aligned}$
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Lernkontrolle Potenzen
39 min, 8 Aufgaben #0994Verschiedene Aufgaben zu Zehnerpotenzen. Zwei Textaufgaben inklusive. Bei den zwei letzten Aufgaben müssen mit Hilfe von Potenzgesetzen Terme vereinfacht werden.
Ableitungsfunktion
34 min, 8 Aufgaben #1588Der Differenzenquotient muss gebildet und Funktionen abgeleitet werden. Darüber hinaus muss eine Ausgangsfunktion gezeichnet und Funktionsgleichungen von Ausgangsfunktionen gebildet werden. Eine Aufgabe über die Differenzierbarkeit einer Betragsfunktion an einer bestimmten Stelle ist auch dabei.
Stammfunktionen und Flächeninhalte
76 min, 8 Aufgaben #8010Wie für das Thema üblich werden zunächst einfache Polynomfunktionen integriert und dann schwierigere Funktionen bei denen zunächst Potenz- und Wurzelgesetze angewendet werden müssen. Der Aufgabentyp mit gegebener Ableitung und einem Punkt die Ausgangsfunktion zu bestimmen ist auch dabei und die zweite Hälfte der Aufgaben behandelt die Flächenberechnung zwischen Graph und x-Achse. Dabei müssen zuerst die Nullstellen bestimmt werden. :)
Analytische Geometrie - Vermischte Aufgaben
71 min, 5 Aufgaben #1919Vektoren, Geraden und Ebenen im dreidimensionalen Raum. Die Aufgaben sind bunt gemischt. Angefangen bei Winkeln und Flächeninhalten über fehlende Koordinaten hin zu Abstandsberechnungen, Seitenverhältnissen, Ebenen und sogar Kugeln.
Vermischte Übungen MSA
36 min, 6 Aufgaben #1290Textgleichungen, Gleichungen mit vielen Klammern, Gleichungssysteme, Textaufgaben zu Körperberechnungen und Wahrscheinlichkeiten sind Inhalt dieses Arbeitsblattes. Anspruchsvolle Aufgaben quer durchs Beet.