Einleitung
Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren.
Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen.
Am Ende noch Übungen bei denen auch Brüche vorkommen.
62 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Vorbereitung
$ -x+2 = 2x-3 $
$ 7x + 3\cdot(-2x+3) = 14 $
$ 3x+7y-3x+2y=24+3 $
$ x = -2y + 4 $; $ y = -3 $
Gleichsetzungsverfahren
$\begin{aligned}[t]
y&=2x-11\\
y&=3x-14
\end{aligned}$
$\begin{aligned}[t]
5y&=2x-1\\
5y&=3x-6
\end{aligned}$
$\begin{aligned}[t]
3p-2q&=11\\
2p-6q&=-12
\end{aligned}$
Einsetzungsverfahren
$\begin{aligned}[t]
5x+y&=2\\
y&=7x-22
\end{aligned}$
$\begin{aligned}[t]
7x-3y&=17\\
x&=4y+6
\end{aligned}$
$\begin{aligned}[t]
-4x+7y&=-1\\
7y&=-x+19
\end{aligned}$
Additionsverfahren
$\begin{aligned}[t]
-4x+6y&=14\\
4x+3y&=-5
\end{aligned}$
$\begin{aligned}[t]
-x-5y&=-17\\
7x+5y&=-1
\end{aligned}$
$\begin{aligned}[t]
2x-3y&=-13\\
5x+2y&=-4
\end{aligned}$
3 Fälle
eine Lösung
$\begin{aligned}[t]
2x-4y&=-2\\
3x+y&=11
\end{aligned}$
keine Lösung
$\begin{aligned}[t]
-x+2y&=4\\
2x-4y&=6
\end{aligned}$
unendlich Lösungen
$\begin{aligned}[t]
2x+y&=-4\\
-6x-3y&=12
\end{aligned}$
$\begin{aligned}[t]
6x+4y&=4\\
9x+6y&=5
\end{aligned}$
$\begin{aligned}[t]
x+y&=2\\
9x+4y&=23
\end{aligned}$
$\begin{aligned}[t]
4x-2y&=14\\
6x-3y&=21
\end{aligned}$
Übungen
$\begin{aligned}[t]
5y&=\frac{1}{2}x+\frac{1}{3}\\
5y&=\frac{2}{3}x+\frac{1}{6}
\end{aligned}$
$\begin{aligned}[t]
13x-\frac{1}{6}y&=-5\\
\frac{1}{6}y&=5x+9
\end{aligned}$
$\begin{aligned}[t]
\frac{8}{11}x+\frac{3}{4}y&=14\\
\frac{6}{11}x-\frac{1}{2}y&=2
\end{aligned}$
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Ikarus Abitur GK Berlin 2016
64 min, 6 Aufgaben #1980Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
Klausurvorbereitung - Analysis - NRW
15 min, 3 Aufgaben #1580Drei kleine verschiedene Aufgaben zur Differentialrechnung. Man muss Sachen berechnen und begründete Entscheidungen geben. Dafür werden Potenzfunktionen 3. Grades mit Nullstellen, Tangenten, Ableitungen und Verschiebungen von Funktionen benutzt.
kgV und ggT
50 min, 6 Aufgaben #0010Primfaktorzerlegung, größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches nimmt die Hälfte des Blattes ein. Die andere Hälfte sind Anwendungsaufgaben.
Abzählverfahren
54 min, 7 Aufgaben #1650Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien. Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.
Klausur - Grundkurs - 2. Semester
42 min, 3 Aufgaben #1660Originale Grundkurs Klausur aus Berlin eines 2. Semesters. Der Hauptteil ist die Kurvendiskussion einer e-Funktion. Wendetangente, Stammfunktion und Flächeninhalt inklusive. Die andere Hälfte beinhaltet Integralrechnung mit Parametern und ein paar kombinatorische Aufgaben.