Einleitung
Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren.
Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen.
Am Ende noch Übungen bei denen auch Brüche vorkommen.
62 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Vorbereitung
$ -x+2 = 2x-3 $
$ 7x + 3\cdot(-2x+3) = 14 $
$ 3x+7y-3x+2y=24+3 $
$ x = -2y + 4 $; $ y = -3 $
Gleichsetzungsverfahren
$\begin{aligned}[t]
y&=2x-11\\
y&=3x-14
\end{aligned}$
$\begin{aligned}[t]
5y&=2x-1\\
5y&=3x-6
\end{aligned}$
$\begin{aligned}[t]
3p-2q&=11\\
2p-6q&=-12
\end{aligned}$
Einsetzungsverfahren
$\begin{aligned}[t]
5x+y&=2\\
y&=7x-22
\end{aligned}$
$\begin{aligned}[t]
7x-3y&=17\\
x&=4y+6
\end{aligned}$
$\begin{aligned}[t]
-4x+7y&=-1\\
7y&=-x+19
\end{aligned}$
Additionsverfahren
$\begin{aligned}[t]
-4x+6y&=14\\
4x+3y&=-5
\end{aligned}$
$\begin{aligned}[t]
-x-5y&=-17\\
7x+5y&=-1
\end{aligned}$
$\begin{aligned}[t]
2x-3y&=-13\\
5x+2y&=-4
\end{aligned}$
3 Fälle
eine Lösung
$\begin{aligned}[t]
2x-4y&=-2\\
3x+y&=11
\end{aligned}$
keine Lösung
$\begin{aligned}[t]
-x+2y&=4\\
2x-4y&=6
\end{aligned}$
unendlich Lösungen
$\begin{aligned}[t]
2x+y&=-4\\
-6x-3y&=12
\end{aligned}$
$\begin{aligned}[t]
6x+4y&=4\\
9x+6y&=5
\end{aligned}$
$\begin{aligned}[t]
x+y&=2\\
9x+4y&=23
\end{aligned}$
$\begin{aligned}[t]
4x-2y&=14\\
6x-3y&=21
\end{aligned}$
Übungen
$\begin{aligned}[t]
5y&=\frac{1}{2}x+\frac{1}{3}\\
5y&=\frac{2}{3}x+\frac{1}{6}
\end{aligned}$
$\begin{aligned}[t]
13x-\frac{1}{6}y&=-5\\
\frac{1}{6}y&=5x+9
\end{aligned}$
$\begin{aligned}[t]
\frac{8}{11}x+\frac{3}{4}y&=14\\
\frac{6}{11}x-\frac{1}{2}y&=2
\end{aligned}$
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Mathematische Kompetenzen - Zufall
15 min, 6 Aufgaben #0008Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.
Klammern auflösen
51 min, 5 Aufgaben #3335Aufgaben zum Vereinfachen von Termen mit Klammern. Zunächst Terme mit Minusklammern, dann welche mit doppelten Klammern (doppeltes Distributivgesetz). Am Ende, so ganz nebenbei, die binomischen Formeln und der ganze Spaß rückwärts: das Ausklammern.
Teilweises Wurzelziehen - Rationalmachen des Nenners
52 min, 11 Aufgaben #0992Aufgaben zum teilweisen, auch partiellen, Wurzelziehen mit Zahlen, Variablen und Faktorisieren. Einfache Aufgaben zum Rationalmachen des Nenners.
Binomische Formeln
89 min, 11 Aufgaben #3120Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz). Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen. Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert. Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.
Brüche kürzen und erweitern
64 min, 6 Aufgaben #0607Das kleine Einmaleins wird hier sehr wichtig: Brüche kürzen und erweitern. Dazu stellt dieses Arbeitsblatt Aufgaben zur Verfügung.