Einleitung

Das kleine Einmaleins wird hier sehr wichtig: Brüche kürzen und erweitern. Dazu stellt dieses Arbeitsblatt Aufgaben zur Verfügung.

64 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Kürze so weit wie möglich.

$\frac{2}{4}$ ; $\frac{6}{8}$ ; $\frac{4}{10}$ ; $\frac{4}{12}$ ; $\frac{7}{14}$ ; $\frac{10}{16}$ ; $\frac{8}{20}$ ; $\frac{9}{14}$

$\frac{4}{6}$ ; $\frac{9}{12}$ ; $\frac{3}{9}$ ; $\frac{8}{18}$ ; $\frac{21}{27}$ ; $\frac{15}{27}$ ; $\frac{20}{35}$ ; $\frac{21}{35}$

$\frac{12}{14}$ ; $\frac{12}{15}$ ; $\frac{12}{16}$ ; $\frac{12}{18}$ ; $\frac{12}{20}$ ; $\frac{12}{21}$ ; $\frac{12}{24}$ ; $\frac{12}{26}$

$\frac{30}{32}$ ; $\frac{18}{32}$ ; $\frac{17}{34}$ ; $\frac{15}{35}$ ; $\frac{2}{36}$ ; $\frac{6}{36}$ ; $\frac{14}{36}$ ; $\frac{21}{36}$

$\frac{10}{4}$ ; $\frac{30}{8}$ ; $\frac{15}{6}$ ; $\frac{18}{6}$ ; $\frac{30}{12}$ ; $\frac{40}{12}$ ; $\frac{50}{12}$ ; $\frac{40}{15}$

$\frac{27}{45}$ ; $\frac{45}{30}$ ; $\frac{64}{32}$ ; $\frac{52}{65}$ ; $\frac{72}{18}$ ; $\frac{72}{24}$ ; $\frac{75}{30}$ ; $\frac{60}{15}$

2

Erweitere $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{5}$, $\frac{5}{8}$, $\frac{4}{9}$, $\frac{10}{3}$, $\frac{11}{8}$, $\frac{12}{5}$ mit

2
3
7
9
10
11
12
25
100

3

Kürze so weit wie möglich.

$\frac{792}{936}$
$\frac{448}{832}$
$\frac{324}{594}$
$\frac{560}{728}$
$\frac{513}{855}$
$\frac{702}{864}$
$\frac{714}{840}$
$\frac{495}{675}$

4

Bestimme den fehlenden Zähler x.

$\frac{1}{2}=\frac{x}{4}$
$\frac{1}{2}=\frac{x}{8}$
$\frac{1}{2}=\frac{x}{24}$
$\frac{2}{3}=\frac{x}{6}$
$\frac{2}{3}=\frac{x}{24}$
$\frac{2}{3}=\frac{x}{45}$
$\frac{3}{4}=\frac{x}{8}$
$\frac{3}{4}=\frac{x}{12}$
$\frac{3}{4}=\frac{x}{80}$
$\frac{2}{5}=\frac{x}{150}$
$\frac{2}{5}=\frac{x}{55}$
$\frac{2}{5}=\frac{x}{15}$
$\frac{4}{3}=\frac{x}{12}$
$\frac{4}{3}=\frac{x}{36}$
$\frac{4}{3}=\frac{x}{93}$

5

Ergänze den fehlenden Nenner x.

$\frac{1}{3}=\frac{3}{x}$
$\frac{1}{3}=\frac{7}{x}$
$\frac{1}{3}=\frac{25}{x}$
$\frac{3}{5}=\frac{12}{x}$
$\frac{3}{5}=\frac{33}{x}$
$\frac{3}{5}=\frac{60}{x}$
$\frac{5}{2}=\frac{30}{x}$
$\frac{5}{2}=\frac{55}{x}$
$\frac{5}{2}=\frac{80}{x}$
$\frac{6}{7}=\frac{36}{x}$
$\frac{6}{7}=\frac{72}{x}$
$\frac{6}{7}=\frac{180}{x}$
$\frac{7}{8}=\frac{49}{x}$
$\frac{7}{8}=\frac{77}{x}$
$\frac{7}{8}=\frac{140}{x}$

6

Mache gleichnamig.

$\frac{2}{3}$ ; $\frac{7}{12}$

$\frac{3}{5}$ ; $\frac{8}{15}$

$\frac{3}{4}$ ; $\frac{5}{6}$

$\frac{3}{4}$ ; $\frac{1}{6}$

$\frac{2}{3}$ ; $\frac{11}{18}$

$\frac{3}{4}$ ; $\frac{4}{5}$

$\frac{2}{7}$ ; $\frac{1}{2}$

$\frac{3}{8}$ ; $\frac{7}{10}$

$\frac{3}{4}$ ; $\frac{11}{12}$

$\frac{2}{3}$ ; $\frac{3}{4}$

$\frac{5}{6}$ ; $\frac{3}{8}$

$\frac{3}{10}$ ; $\frac{5}{12}$

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 6 Grundschule


Weitere Arbeitsblätter

Wichtige Formeln im Gebäudeenergiegesetz

0 min, 4 Aufgaben #PQUV

In diesem Arbeitsblatt werden die grundlegenden Formeln zur Berechnung der wichtigsten Kennzahlen im Gebäudeenergiegesetz (GEG) vorgestellt. Sie erhalten die notwendigen Formeln und Erklärungen, um den Primärenergiebedarf, den Transmissionswärmeverlust, den Erneuerbare-Energien-Anteil und den U-Wert zu verstehen und anzuwenden. Diese Kennzahlen sind entscheidend für die Beurteilung der Energieeffizienz von Gebäuden und für die Umsetzung der Vorgaben des GEG.

Übersicht e-Funktionen ableiten

69 min, 7 Aufgaben #6600

Schritt für Schritt werden die verschiedenen Ableitungsregeln bei e-Funktionen gezeigt und es gibt Aufgaben mit Kombinationen dieser Regeln (Konstantenregel, Faktorregel, Produktregel, Kettenregel). Das Arbeitsblatt endet mit einer typischen Kurvendiskussion über eine e-Funktion.

Abschlussarbeit Klasse 9 ohne Taschenrechner

42 min, 11 Aufgaben #2851

Aufgaben quer durch die 9. Klasse für Profis. Potenzrechnung, Terme, Gleichungen umstellen, Geometrie, Brüche, Maßstäbe, Funktionen und Kombinatorik. Alles ohne Taschenrechner! Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Terme addieren und subtrahieren

43 min, 8 Aufgaben #2828

Terme vereinfachen indem man gleichartige Glieder zusammenfasst und ggf. vorher noch ein paar Klammern auflöst. Auch müssen Terme aufgestellt und Zahlenmauern gelöst werden.

Quadratische Funktionen

53 min, 6 Aufgaben #0070

Eine Einführung in quadratische Funktionen. Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen. Ausblick könnte die quadratische Ergänzung sein.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum