Einleitung

Das kleine Einmaleins wird hier sehr wichtig: Brüche kürzen und erweitern. Dazu stellt dieses Arbeitsblatt Aufgaben zur Verfügung.

64 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Kürze so weit wie möglich.

$\frac{2}{4}$ ; $\frac{6}{8}$ ; $\frac{4}{10}$ ; $\frac{4}{12}$ ; $\frac{7}{14}$ ; $\frac{10}{16}$ ; $\frac{8}{20}$ ; $\frac{9}{14}$

$\frac{4}{6}$ ; $\frac{9}{12}$ ; $\frac{3}{9}$ ; $\frac{8}{18}$ ; $\frac{21}{27}$ ; $\frac{15}{27}$ ; $\frac{20}{35}$ ; $\frac{21}{35}$

$\frac{12}{14}$ ; $\frac{12}{15}$ ; $\frac{12}{16}$ ; $\frac{12}{18}$ ; $\frac{12}{20}$ ; $\frac{12}{21}$ ; $\frac{12}{24}$ ; $\frac{12}{26}$

$\frac{30}{32}$ ; $\frac{18}{32}$ ; $\frac{17}{34}$ ; $\frac{15}{35}$ ; $\frac{2}{36}$ ; $\frac{6}{36}$ ; $\frac{14}{36}$ ; $\frac{21}{36}$

$\frac{10}{4}$ ; $\frac{30}{8}$ ; $\frac{15}{6}$ ; $\frac{18}{6}$ ; $\frac{30}{12}$ ; $\frac{40}{12}$ ; $\frac{50}{12}$ ; $\frac{40}{15}$

$\frac{27}{45}$ ; $\frac{45}{30}$ ; $\frac{64}{32}$ ; $\frac{52}{65}$ ; $\frac{72}{18}$ ; $\frac{72}{24}$ ; $\frac{75}{30}$ ; $\frac{60}{15}$

2

Erweitere $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{5}$, $\frac{5}{8}$, $\frac{4}{9}$, $\frac{10}{3}$, $\frac{11}{8}$, $\frac{12}{5}$ mit

2
3
7
9
10
11
12
25
100

3

Kürze so weit wie möglich.

$\frac{792}{936}$
$\frac{448}{832}$
$\frac{324}{594}$
$\frac{560}{728}$
$\frac{513}{855}$
$\frac{702}{864}$
$\frac{714}{840}$
$\frac{495}{675}$

4

Bestimme den fehlenden Zähler x.

$\frac{1}{2}=\frac{x}{4}$
$\frac{1}{2}=\frac{x}{8}$
$\frac{1}{2}=\frac{x}{24}$
$\frac{2}{3}=\frac{x}{6}$
$\frac{2}{3}=\frac{x}{24}$
$\frac{2}{3}=\frac{x}{45}$
$\frac{3}{4}=\frac{x}{8}$
$\frac{3}{4}=\frac{x}{12}$
$\frac{3}{4}=\frac{x}{80}$
$\frac{2}{5}=\frac{x}{150}$
$\frac{2}{5}=\frac{x}{55}$
$\frac{2}{5}=\frac{x}{15}$
$\frac{4}{3}=\frac{x}{12}$
$\frac{4}{3}=\frac{x}{36}$
$\frac{4}{3}=\frac{x}{93}$

5

Ergänze den fehlenden Nenner x.

$\frac{1}{3}=\frac{3}{x}$
$\frac{1}{3}=\frac{7}{x}$
$\frac{1}{3}=\frac{25}{x}$
$\frac{3}{5}=\frac{12}{x}$
$\frac{3}{5}=\frac{33}{x}$
$\frac{3}{5}=\frac{60}{x}$
$\frac{5}{2}=\frac{30}{x}$
$\frac{5}{2}=\frac{55}{x}$
$\frac{5}{2}=\frac{80}{x}$
$\frac{6}{7}=\frac{36}{x}$
$\frac{6}{7}=\frac{72}{x}$
$\frac{6}{7}=\frac{180}{x}$
$\frac{7}{8}=\frac{49}{x}$
$\frac{7}{8}=\frac{77}{x}$
$\frac{7}{8}=\frac{140}{x}$

6

Mache gleichnamig.

$\frac{2}{3}$ ; $\frac{7}{12}$

$\frac{3}{5}$ ; $\frac{8}{15}$

$\frac{3}{4}$ ; $\frac{5}{6}$

$\frac{3}{4}$ ; $\frac{1}{6}$

$\frac{2}{3}$ ; $\frac{11}{18}$

$\frac{3}{4}$ ; $\frac{4}{5}$

$\frac{2}{7}$ ; $\frac{1}{2}$

$\frac{3}{8}$ ; $\frac{7}{10}$

$\frac{3}{4}$ ; $\frac{11}{12}$

$\frac{2}{3}$ ; $\frac{3}{4}$

$\frac{5}{6}$ ; $\frac{3}{8}$

$\frac{3}{10}$ ; $\frac{5}{12}$

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 6 Grundschule


Weitere Arbeitsblätter

Kleine vermischte Übungen - Klasse 8

50 min, 12 Aufgaben #5200

Bunt gemischte Textaufgaben zu verschiedenen Themen der 8. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.

Lineare Gleichungssysteme lösen

62 min, 7 Aufgaben #3820

Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren. Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen. Am Ende noch Übungen bei denen auch Brüche vorkommen.

Textgleichungen mit Brüchen für Profis 1v3

39 min, 8 Aufgaben #1341

Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.

Anteile, Bruchteile, Ausgangsgröße und Einheiten

48 min, 6 Aufgaben #0506

Wenn es um Anteile geht gibt es drei grundlegende Aufgabentypen. Jeweils muss der Groschen dabei fallen, damit man es auch wirklich versteht und weitere mathematische Konzepte erschließbar werden. Passend zu der Thematik beschäftigt sich die andere Hälfte des Arbeitsblattes mit der Umrechnung von Einheiten.

Anwendungsaufgaben Dreiecksmessung

59 min, 5 Aufgaben #7020

Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum