Einleitung

Das kleine Einmaleins wird hier sehr wichtig: Brüche kürzen und erweitern. Dazu stellt dieses Arbeitsblatt Aufgaben zur Verfügung.

64 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Kürze so weit wie möglich.

$\frac{2}{4}$ ; $\frac{6}{8}$ ; $\frac{4}{10}$ ; $\frac{4}{12}$ ; $\frac{7}{14}$ ; $\frac{10}{16}$ ; $\frac{8}{20}$ ; $\frac{9}{14}$

$\frac{4}{6}$ ; $\frac{9}{12}$ ; $\frac{3}{9}$ ; $\frac{8}{18}$ ; $\frac{21}{27}$ ; $\frac{15}{27}$ ; $\frac{20}{35}$ ; $\frac{21}{35}$

$\frac{12}{14}$ ; $\frac{12}{15}$ ; $\frac{12}{16}$ ; $\frac{12}{18}$ ; $\frac{12}{20}$ ; $\frac{12}{21}$ ; $\frac{12}{24}$ ; $\frac{12}{26}$

$\frac{30}{32}$ ; $\frac{18}{32}$ ; $\frac{17}{34}$ ; $\frac{15}{35}$ ; $\frac{2}{36}$ ; $\frac{6}{36}$ ; $\frac{14}{36}$ ; $\frac{21}{36}$

$\frac{10}{4}$ ; $\frac{30}{8}$ ; $\frac{15}{6}$ ; $\frac{18}{6}$ ; $\frac{30}{12}$ ; $\frac{40}{12}$ ; $\frac{50}{12}$ ; $\frac{40}{15}$

$\frac{27}{45}$ ; $\frac{45}{30}$ ; $\frac{64}{32}$ ; $\frac{52}{65}$ ; $\frac{72}{18}$ ; $\frac{72}{24}$ ; $\frac{75}{30}$ ; $\frac{60}{15}$

2

Erweitere $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{5}$, $\frac{5}{8}$, $\frac{4}{9}$, $\frac{10}{3}$, $\frac{11}{8}$, $\frac{12}{5}$ mit

2
3
7
9
10
11
12
25
100

3

Kürze so weit wie möglich.

$\frac{792}{936}$
$\frac{448}{832}$
$\frac{324}{594}$
$\frac{560}{728}$
$\frac{513}{855}$
$\frac{702}{864}$
$\frac{714}{840}$
$\frac{495}{675}$

4

Bestimme den fehlenden Zähler x.

$\frac{1}{2}=\frac{x}{4}$
$\frac{1}{2}=\frac{x}{8}$
$\frac{1}{2}=\frac{x}{24}$
$\frac{2}{3}=\frac{x}{6}$
$\frac{2}{3}=\frac{x}{24}$
$\frac{2}{3}=\frac{x}{45}$
$\frac{3}{4}=\frac{x}{8}$
$\frac{3}{4}=\frac{x}{12}$
$\frac{3}{4}=\frac{x}{80}$
$\frac{2}{5}=\frac{x}{150}$
$\frac{2}{5}=\frac{x}{55}$
$\frac{2}{5}=\frac{x}{15}$
$\frac{4}{3}=\frac{x}{12}$
$\frac{4}{3}=\frac{x}{36}$
$\frac{4}{3}=\frac{x}{93}$

5

Ergänze den fehlenden Nenner x.

$\frac{1}{3}=\frac{3}{x}$
$\frac{1}{3}=\frac{7}{x}$
$\frac{1}{3}=\frac{25}{x}$
$\frac{3}{5}=\frac{12}{x}$
$\frac{3}{5}=\frac{33}{x}$
$\frac{3}{5}=\frac{60}{x}$
$\frac{5}{2}=\frac{30}{x}$
$\frac{5}{2}=\frac{55}{x}$
$\frac{5}{2}=\frac{80}{x}$
$\frac{6}{7}=\frac{36}{x}$
$\frac{6}{7}=\frac{72}{x}$
$\frac{6}{7}=\frac{180}{x}$
$\frac{7}{8}=\frac{49}{x}$
$\frac{7}{8}=\frac{77}{x}$
$\frac{7}{8}=\frac{140}{x}$

6

Mache gleichnamig.

$\frac{2}{3}$ ; $\frac{7}{12}$

$\frac{3}{5}$ ; $\frac{8}{15}$

$\frac{3}{4}$ ; $\frac{5}{6}$

$\frac{3}{4}$ ; $\frac{1}{6}$

$\frac{2}{3}$ ; $\frac{11}{18}$

$\frac{3}{4}$ ; $\frac{4}{5}$

$\frac{2}{7}$ ; $\frac{1}{2}$

$\frac{3}{8}$ ; $\frac{7}{10}$

$\frac{3}{4}$ ; $\frac{11}{12}$

$\frac{2}{3}$ ; $\frac{3}{4}$

$\frac{5}{6}$ ; $\frac{3}{8}$

$\frac{3}{10}$ ; $\frac{5}{12}$

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 6 Grundschule


Weitere Arbeitsblätter

Klassenarbeit - Rechnen mit Wurzeln

27 min, 9 Aufgaben #0993

Originale Arbeit einer 9. Klasse mit 60 möglichen Punkten ohne Taschenrechner zur Wurzelrechnung.

Einführung Terme

65 min, 8 Aufgaben #2826

Erste Aufgaben zu Termen. Termwerte berechen, Terme vergleichen und Textgleichungen in beide Richtungen: sowohl Gleichungen aus Texten aufstellen aber auch Texte basierend auf Gleichungen verfassen. Die Hälfte der Aufgaben beschäftigt sich mit dem Zusammenfassen von Termen.

Ableitungsfunktion und ihre Anwendung

92 min, 12 Aufgaben #1590

Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.

Ikarus Abitur GK Berlin 2016

64 min, 6 Aufgaben #1980

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Weidezelt Abitur GK Berlin 2016

64 min, 6 Aufgaben #1611

Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum