Einleitung
Aufgaben zum Vereinfachen von Termen mit Klammern. Zunächst Terme mit Minusklammern, dann welche mit doppelten Klammern (doppeltes Distributivgesetz).
Am Ende, so ganz nebenbei, die binomischen Formeln und der ganze Spaß rückwärts: das Ausklammern.
51 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Löse erst die Klammern auf und fasse dann zusammen.
$(x-y)-(x+y)$
$(r+s)-(r-s)$
$4a-(a-b)$
$(5-x)-(x-7)$
$-(4x-7)-(10-3)$
$(21a+13b)-(-5a+7b)$
$75x-(18x-9y)-(3y-4x)$
$45a+(41a+39b)-(8b+52a)$
Löse die Klammern auf.
$(a+b)(c-d)$
$(a-b)(c-d)$
$(a+3)(b+8)$
$(y-7)(4-z)$
$(3a-2)(4b+8)$
$(4x-5)(7z+7)$
$(2a-10)(-b-13)$
$(5a+3b)(4c+7d)$
$(5r-2s)(3u+4v)$
Löse erst die Klammern auf und fasse dann zusammen.
$(a-4)(a+5)$
$(z+7)(z-6)$
$(10-b)(7+b)$
$(1-x)(x-1)$
$(a + 3b)(a+b)$
$(3x+2y)(x+4y)$
$(7a-3b)(4a-6b)$
$(-x-2y)(-x+y)$
$(3y+7z)(5z+4y)$
Löse erst die Klammern auf und fasse dann zusammen.
$(x+y)^2$
$(x-y)^2$
$(x+y)(x-y)$
$(b+7)^2$
$(u-2)^2$
$(z-\frac{1}{2})^2$
$(3a+b)^2$
$(\frac{1}{2}r - \frac{3}{4})^2$
$(9-2z)(9+2z)$
Klammere aus.
$5x + 5y$
$5xy - 6xz$
$7xy + 7xz$
$0,5a^2b - 3ab^2$
$ax + bx + cx$
$15a^2 - 25ab$
$24xy^2 + 18yz^2$
$12a^3bx^2-30abx-6ab^2x^2$
Weitere Arbeitsblätter
Übersicht e-Funktionen ableiten
69 min, 7 Aufgaben #6600Schritt für Schritt werden die verschiedenen Ableitungsregeln bei e-Funktionen gezeigt und es gibt Aufgaben mit Kombinationen dieser Regeln (Konstantenregel, Faktorregel, Produktregel, Kettenregel). Das Arbeitsblatt endet mit einer typischen Kurvendiskussion über eine e-Funktion.
Anwendungsaufgaben Dreiecksmessung
59 min, 5 Aufgaben #7020Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.
Binomische Formeln
89 min, 11 Aufgaben #3120Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz). Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen. Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert. Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.
Lineare Funktionen
54 min, 6 Aufgaben #3800Dieses Arbeitsblatt führt an lineare Funktionen heran. Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.
Quadratische Funktionen
53 min, 6 Aufgaben #0070Eine Einführung in quadratische Funktionen. Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen. Ausblick könnte die quadratische Ergänzung sein.