Einleitung
Übungen zum Vereinfachen von Termen durch die vier Grundrechenarten: Addition, Subtraktion, Multiplikation und Division.
Unter anderem müssen gleichartige Glieder zusammengefasst und Klammern aufgelöst werden.
35 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.
Aufgaben
Vereinfache die Terme.
$x+x$
$c + c+ d + d +e + d + e$
$a + b + b + b + a$
$9 \cdot 7x$
$2a \cdot 5b \cdot 7$
$12 \cdot 3b \cdot 2$
$\frac{1}{2} \cdot 4a$
$\frac{6}{7} \cdot \frac{2}{3} r$
$0,25y \cdot 1,5$
$5 \cdot (-8x)$
$(-13) \cdot (-7z)$
$(-5r) \cdot (-3s) \cdot (-7t)$
$8x : 4$
$42x : (-7)$
$-63y : (-9)$
Vereinfache die Terme.
$x \cdot x$
$r \cdot r\cdot s\cdot t\cdot t\cdot s\cdot r\cdot t$
$a^2 \cdot a^3$
$6z^2 \cdot 8z^5$
$7b \cdot (-4c) \cdot 2b^8$
$\frac{2}{3}z^2 \cdot \frac{3}{4}z^3$
$-3x^2 \cdot (-4)x^5$
$2ab\cdot 9ab$
$3x \cdot 2xy^4\cdot x^2y$
Vereinfache die Terme.
$3a + 4a$
$12a - 5a$
$4x + 7x + 5x$
$5c + 8c - 9c + 4c$
$4x + 7x + 5y + 9y$
$42y + 17z - 16y - 7z$
$\frac{2}{7} x + \frac{6}{7}x$
$\frac{4}{5}r + \frac{5}{2}r + \frac{7}{8}s + \frac{3}{4}s$
$9x - 17x$
$7a^2 + 5a^2 - 3a^2$
$3x^2 + 9x^2 + 12y^2 + 5y^2$
$x^2x^3 + 3x \cdot x^4 - 2x^5$
Multipliziere aus.
$a(b+c)$
$7(a+b)$
$(a+b)\cdot 5$
$8(r-4)$
$(z-6)\cdot 9$
$-3\cdot(x+y)$
$-4 \cdot (3-x)$
$\frac{3}{4} \cdot (r+s)$
$5(4x+3)$
$-6(8c-2)$
$2a(3x+4y)$
$(7y+z)\cdot 6x$
$7(x+y+z)$
$(r-s-4)\cdot 9$
$3a(x+8y+6z)$
$7x^2(17x-3y+5z)$
$(3a^2-7b^2-4c^2)\cdot 2abc$
$-7rs(11r^2-12rs)$
Weitere Arbeitsblätter
Terme und Gleichungen in Texten
57 min, 10 Aufgaben #1300Das Arbeitsblatt besteht aus 3 Teilen. Aufgestellt werden müssen Terme (1), einfache Gleichungen (2), schwierige Gleichungen (3).
Binomische Formeln
89 min, 11 Aufgaben #3120Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz). Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen. Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert. Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.
Berechnungen an Körpern
62 min, 6 Aufgaben #9598Zunächst müssen Skizzen von Zylinder, Kegel, Pyramide und Kugel angefertigt werden. Anschließend gibt es einfache Aufgaben zu Oberfläche und Volumen wobei nur gegebene Werte in entsprechende Formeln eingesetzt werden müssen. Danach variieren die gegebenen Werte, sodass die Formeln umgestellt werden müssen.
Dezimalbrüche
85 min, 7 Aufgaben #1010In verschiedenen Aufgaben werden gebrochene Zahlen zwischen Dezimalzahlen und echten Brüchen hin und her umgewandelt.
Polynomdivision und mittlere Änderungsrate
35 min, 6 Aufgaben #1551Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.