Einleitung

Übungen zum Vereinfachen von Termen durch die vier Grundrechenarten: Addition, Subtraktion, Multiplikation und Division.
Unter anderem müssen gleichartige Glieder zusammengefasst und Klammern aufgelöst werden.

35 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.

Aufgaben

1

Vereinfache die Terme.

$x+x$

$c + c+ d + d +e + d + e$

$a + b + b + b + a$

$9 \cdot 7x$

$2a \cdot 5b \cdot 7$

$12 \cdot 3b \cdot 2$

$\frac{1}{2} \cdot 4a$

$\frac{6}{7} \cdot \frac{2}{3} r$

$0,25y \cdot 1,5$

$5 \cdot (-8x)$

$(-13) \cdot (-7z)$

$(-5r) \cdot (-3s) \cdot (-7t)$

$8x : 4$

$42x : (-7)$

$-63y : (-9)$

2

Vereinfache die Terme.

$x \cdot x$

$r \cdot r\cdot s\cdot t\cdot t\cdot s\cdot r\cdot t$

$a^2 \cdot a^3$

$6z^2 \cdot 8z^5$

$7b \cdot (-4c) \cdot 2b^8$

$\frac{2}{3}z^2 \cdot \frac{3}{4}z^3$

$-3x^2 \cdot (-4)x^5$

$2ab\cdot 9ab$

$3x \cdot 2xy^4\cdot x^2y$

3

Vereinfache die Terme.

$3a + 4a$

$12a - 5a$

$4x + 7x + 5x$

$5c + 8c - 9c + 4c$

$4x + 7x + 5y + 9y$

$42y + 17z - 16y - 7z$

$\frac{2}{7} x + \frac{6}{7}x$

$\frac{4}{5}r + \frac{5}{2}r + \frac{7}{8}s + \frac{3}{4}s$

$9x - 17x$

$7a^2 + 5a^2 - 3a^2$

$3x^2 + 9x^2 + 12y^2 + 5y^2$

$x^2x^3 + 3x \cdot x^4 - 2x^5$

4

Multipliziere aus.

$a(b+c)$

$7(a+b)$

$(a+b)\cdot 5$

$8(r-4)$

$(z-6)\cdot 9$

$-3\cdot(x+y)$

$-4 \cdot (3-x)$

$\frac{3}{4} \cdot (r+s)$

$5(4x+3)$

$-6(8c-2)$

$2a(3x+4y)$

$(7y+z)\cdot 6x$

$7(x+y+z)$

$(r-s-4)\cdot 9$

$3a(x+8y+6z)$

$7x^2(17x-3y+5z)$

$(3a^2-7b^2-4c^2)\cdot 2abc$

$-7rs(11r^2-12rs)$

PDF zum Drucken

Weitere Arbeitsblätter

Strahlensätze *

27 min, 3 Aufgaben #4181

Die Strahlensätze werden zunächst an klassischen Aufgaben mit gegebener Skizze gezeigt und im Anschluss an Textaufgaben gefestigt.

Gartenhaus Abitur GK Berlin 2016

62 min, 6 Aufgaben #1981

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Arbeit - quadratische Funktionen

39 min, 4 Aufgaben #0069

Eine originale Arbeit mit 46 erreichbaren Punkten zum Thema quadratische Funktionen. Mit dabei: Linearfaktor, Satz von Vieta, Scheitelpunktsform, Optimierungsproblem und Imbiss Bronko.

Anwendungsaufgaben radioaktiver Zerfall

58 min, 5 Aufgaben #6543

Textaufgaben über Stoffe, die exponentiell Zerfallen. Wertetabellen, Prozente und Halbwertszeiten kommen unter anderem vor. Es sind im Wesentlichen verschiedene Aufgaben zu Exponentialfunktionen deren Wachstumsfaktor kleiner als 1 ist.

Anwendungsaufgaben Dreiecksmessung

59 min, 5 Aufgaben #7020

Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum