Einleitung

Übungen zum Vereinfachen von Termen durch die vier Grundrechenarten: Addition, Subtraktion, Multiplikation und Division.
Unter anderem müssen gleichartige Glieder zusammengefasst und Klammern aufgelöst werden.

35 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.

Aufgaben

1

Vereinfache die Terme.

$x+x$

$c + c+ d + d +e + d + e$

$a + b + b + b + a$

$9 \cdot 7x$

$2a \cdot 5b \cdot 7$

$12 \cdot 3b \cdot 2$

$\frac{1}{2} \cdot 4a$

$\frac{6}{7} \cdot \frac{2}{3} r$

$0,25y \cdot 1,5$

$5 \cdot (-8x)$

$(-13) \cdot (-7z)$

$(-5r) \cdot (-3s) \cdot (-7t)$

$8x : 4$

$42x : (-7)$

$-63y : (-9)$

2

Vereinfache die Terme.

$x \cdot x$

$r \cdot r\cdot s\cdot t\cdot t\cdot s\cdot r\cdot t$

$a^2 \cdot a^3$

$6z^2 \cdot 8z^5$

$7b \cdot (-4c) \cdot 2b^8$

$\frac{2}{3}z^2 \cdot \frac{3}{4}z^3$

$-3x^2 \cdot (-4)x^5$

$2ab\cdot 9ab$

$3x \cdot 2xy^4\cdot x^2y$

3

Vereinfache die Terme.

$3a + 4a$

$12a - 5a$

$4x + 7x + 5x$

$5c + 8c - 9c + 4c$

$4x + 7x + 5y + 9y$

$42y + 17z - 16y - 7z$

$\frac{2}{7} x + \frac{6}{7}x$

$\frac{4}{5}r + \frac{5}{2}r + \frac{7}{8}s + \frac{3}{4}s$

$9x - 17x$

$7a^2 + 5a^2 - 3a^2$

$3x^2 + 9x^2 + 12y^2 + 5y^2$

$x^2x^3 + 3x \cdot x^4 - 2x^5$

4

Multipliziere aus.

$a(b+c)$

$7(a+b)$

$(a+b)\cdot 5$

$8(r-4)$

$(z-6)\cdot 9$

$-3\cdot(x+y)$

$-4 \cdot (3-x)$

$\frac{3}{4} \cdot (r+s)$

$5(4x+3)$

$-6(8c-2)$

$2a(3x+4y)$

$(7y+z)\cdot 6x$

$7(x+y+z)$

$(r-s-4)\cdot 9$

$3a(x+8y+6z)$

$7x^2(17x-3y+5z)$

$(3a^2-7b^2-4c^2)\cdot 2abc$

$-7rs(11r^2-12rs)$

PDF zum Drucken

Weitere Arbeitsblätter

Brüche kürzen und erweitern

64 min, 6 Aufgaben #0607

Das kleine Einmaleins wird hier sehr wichtig: Brüche kürzen und erweitern. Dazu stellt dieses Arbeitsblatt Aufgaben zur Verfügung.

Gauß Verfahren

84 min, 7 Aufgaben #1777

Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.

Lineare Funktionen

54 min, 6 Aufgaben #3800

Dieses Arbeitsblatt führt an lineare Funktionen heran. Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.

Bernoulli-Ketten Anwendung

37 min, 4 Aufgaben #1701

Anwendungsaufgaben zu Bernoulli-Ketten. Die ersten zwei Aufgaben fragen die grundlegenden Berechnungen ab. Die dritte ist vom Typ mindestens-mindestens und die vierte zeichnet sich durch eine äußert schwierige Aufgabenstellung aus. Ein kühler Kopf ist hier gefragt.

Ableitungsfunktion

34 min, 8 Aufgaben #1588

Der Differenzenquotient muss gebildet und Funktionen abgeleitet werden. Darüber hinaus muss eine Ausgangsfunktion gezeichnet und Funktionsgleichungen von Ausgangsfunktionen gebildet werden. Eine Aufgabe über die Differenzierbarkeit einer Betragsfunktion an einer bestimmten Stelle ist auch dabei.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum