Einleitung
Eine originale Arbeit mit 46 erreichbaren Punkten zum Thema quadratische Funktionen.
Mit dabei: Linearfaktor, Satz von Vieta, Scheitelpunktsform, Optimierungsproblem und Imbiss Bronko.
39 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.
Aufgaben
Von einer quadratischen Gleichung ist die Lösungsmenge L = $\{\frac{1}{2}; 4\}$ bekannt.
Ermittle mit Hilfe von Linearfaktoren die zugehörige allgemeine quadratische Gleichung.
Wende den Satz von Vieta an, um eine Probe durchzuführen.
Forme in die Scheitelpunktsform um.
Ist der zugehörige Graph durch die Lösungsmenge eindeutig bestimmt?
Beschreibe die Lage der denkbaren Graphen zu der gegebenen Lösungsmenge, wenn zusätzlich vorausgesetzt wird, dass es sich um eine Normalparabel handelt.
Gegeben ist die quadratische Funktion $f$ mit $f(x) = -4x^2 + 20x - 25$.
Bestimme die Nullstellen der Funktion.
Bestimme den Scheitelpunkt der Parabel und stelle fest, ob er der höchste oder tiefste Punkt der Parabel ist.
Welcher Punkt $Q_1$ der Parabel liegt auf der y-Achse?
Welcher Punkt $Q_2$ hat die gleiche 2. Koordinate wie $Q_1$?
Eine Normalparabel geht durch den Ursprung und hat $x = 2$ als Symmetrieachse.
Bestimme den Scheitelpunkt.
Bestimme alle Schnittstellen mit den Koordinatenachsen.
Manuel Romeike hat einen Würstchenstand.
Würstchen werden für 50 Cent das Stück eingekauft und bisher für 2 € das Stück verkauft. Pro Woche werden so 400 Würstchen verkauft.
Für seinen 3-wöchigen Urlaub werden die Aushilfen Tarek, Maxim und Nico eingestellt. Diese drehen in den Wochen von Manuels Abwesenheit am Verkaufspreis der Würstchen. Sie stellen fest, dass mit einer Preisreduzierung um 5 Cent 15 Würstchen mehr pro Woche verkauft werden (z.B. bei 20 Cent 60 Würstchen u.s.w.).
Mit welchem Verkaufspreis würde Manuel am meisten Geld verdienen?
(Löse das Optimierungsproblem systematisch und kommentiere die Arbeitsschritte des Lösungswegs.
Bewerte kurz die Praxistauglichkeit der rechnerischen Lösung. Sollte man nicht lieber gleich 1€ nehmen?)
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Klammern auflösen
51 min, 5 Aufgaben #3335Aufgaben zum Vereinfachen von Termen mit Klammern. Zunächst Terme mit Minusklammern, dann welche mit doppelten Klammern (doppeltes Distributivgesetz). Am Ende, so ganz nebenbei, die binomischen Formeln und der ganze Spaß rückwärts: das Ausklammern.
Klammern auflösen
35 min, 8 Aufgaben #3336Das Vereinfachen von Termen mit Klammern wird Stück für Stück gezeigt. Mit dabei sind Minusklammern, das einfache und das doppelte Distributivgesetz. Nach den Aufgaben ist man fachlich soweit sich als nächstes an die binomischen Formeln vagen zu können.
Wahrscheinlichkeiten
14 min, 2 Aufgaben #7390Zwei originale Aufgaben der mittleren Schulabschluss Prüfung (MSA) von 2012 und 2014 aus Berlin.
Brüche kürzen und erweitern
64 min, 6 Aufgaben #0607Das kleine Einmaleins wird hier sehr wichtig: Brüche kürzen und erweitern. Dazu stellt dieses Arbeitsblatt Aufgaben zur Verfügung.
Klammern auflösen
56 min, 9 Aufgaben #3337Alle Möglichkeiten von Klammern auf einem Blatt. Mit diesen Übungen kann beim Auflösen von Klammern gar nichts mehr schief laufen.