Einleitung
Beispielaufgaben für die zentralen Klausuren aus Nordrhein-Westfalen vom Schulministerium.
Es wird vor allem das Verständnis der Ableitungsfunktion geprüft. Wachstumsgeschwindigkeiten, Funktionsgleichungen von Tangenten und Skizzen kommen vor.
16 Minuten Erklärungen in 3 Aufgaben von Koonys Schule.
Aufgaben
Die Funktion $f(t) = \frac{1}{4}t^3 - 3t^2+9t$ beschreibt näherungsweise die Wachstums geschwindigkeit einer Pflanze in der Einheit Zentimeter pro Woche. Dabei gibt $t$ die Zeit in Wochen seit Beobachtungsbeginn an, es gilt: $0 \le t \le 6$. Der Graph der Funktion ist in der Abbildung dargestellt.
Berechnen Sie die Wachstumsgeschwindigkeit der Pflanze nach zwei Wochen.
Nehmen Sie an, die Pflanze hätte nach vier Wochen eine Höhe von 70cm.
Entscheiden Sie begründet, ob die Pflanze nach fünf Wochen kleiner, größer oder gleich 74cm ist.

Die folgende Abbildung zeigt den Graphen der Funktion $f(x) = \frac{1}{3}x^3-2x^2+\frac{16}{3}$.
Bestimmen Sie eine Gleichung der Tangente $t$ an den Graphen von $f$ im Punkt P(2$\vert$0).
Skizzieren Sie den Graphen von $f'$ in die Abbildung.

Gegeben ist eine Funktion $f$. Die Abbildung 1 zeigt die Parabel ihrer Ableitungsfunktion $f'(x) = -\frac{1}{4}x^2+x+3$.
Die Parabel von $f'$ besitzt die beiden Nullstellen $x=-2$ und $x=6$. Ermitteln Sie unter Verwendung dieser Nullstellen rechnerisch die Koordinaten des Scheitelpunktes S der Parabel.
Begründen Sie, dass keine der beiden Abbildungen den Graphen der Funktion f zeigt.

Weitere Arbeitsblätter
Lichtkunst Abitur GK Hamburg
61 min, 6 Aufgaben #1945Abituraufgabe aus der zentralen schriftlichen Abiturprüfung 2005 im Fach Mathematik aus Hamburg für den Grundkurs mit insgesamt 100 erreichbaren Punkten.
Diagnosetest konstruieren und argumentieren
36 min, 5 Aufgaben #4025Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.
Abschlussarbeit Klasse 9 ohne Taschenrechner
39 min, 8 Aufgaben #2850Aufgaben quer durch die 9. Klasse für Profis. Ohne Taschenrechner knifflige Terme berechnen. Außerdem Prozentrechnung, Flächeninhalte, Gleichungen umstellen, Funktionen, Textgleichungen, Strahlensätze und Wahrscheinlichkeiten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
Teilweises Wurzelziehen - Rationalmachen des Nenners
52 min, 11 Aufgaben #0992Aufgaben zum teilweisen, auch partiellen, Wurzelziehen mit Zahlen, Variablen und Faktorisieren. Einfache Aufgaben zum Rationalmachen des Nenners.
Klassenarbeit Terme und Gleichungen
26 min, 5 Aufgaben #3750Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.