Einleitung
Beispielaufgaben für die zentralen Klausuren aus Nordrhein-Westfalen vom Schulministerium.
Es wird vor allem das Verständnis der Ableitungsfunktion geprüft. Wachstumsgeschwindigkeiten, Funktionsgleichungen von Tangenten und Skizzen kommen vor.
16 Minuten Erklärungen in 3 Aufgaben von Koonys Schule.
Aufgaben
Die Funktion $f(t) = \frac{1}{4}t^3 - 3t^2+9t$ beschreibt näherungsweise die Wachstums geschwindigkeit einer Pflanze in der Einheit Zentimeter pro Woche. Dabei gibt $t$ die Zeit in Wochen seit Beobachtungsbeginn an, es gilt: $0 \le t \le 6$. Der Graph der Funktion ist in der Abbildung dargestellt.
Berechnen Sie die Wachstumsgeschwindigkeit der Pflanze nach zwei Wochen.
Nehmen Sie an, die Pflanze hätte nach vier Wochen eine Höhe von 70cm.
Entscheiden Sie begründet, ob die Pflanze nach fünf Wochen kleiner, größer oder gleich 74cm ist.
Die folgende Abbildung zeigt den Graphen der Funktion $f(x) = \frac{1}{3}x^3-2x^2+\frac{16}{3}$.
Bestimmen Sie eine Gleichung der Tangente $t$ an den Graphen von $f$ im Punkt P(2$\vert$0).
Skizzieren Sie den Graphen von $f'$ in die Abbildung.
Gegeben ist eine Funktion $f$. Die Abbildung 1 zeigt die Parabel ihrer Ableitungsfunktion $f'(x) = -\frac{1}{4}x^2+x+3$.
Die Parabel von $f'$ besitzt die beiden Nullstellen $x=-2$ und $x=6$. Ermitteln Sie unter Verwendung dieser Nullstellen rechnerisch die Koordinaten des Scheitelpunktes S der Parabel.
Begründen Sie, dass keine der beiden Abbildungen den Graphen der Funktion f zeigt.
Weitere Arbeitsblätter
Abschlussarbeit Klasse 9 mit Taschenrechner
42 min, 6 Aufgaben #2853Aufgaben quer durch die 9. Klasse. Statistiken, lineare Gleichungen, Funktionen, Textgleichungen, Strahlensätze, Prozentrechnung und Flächeninhalten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
Vermischte Übungen MSA
36 min, 6 Aufgaben #1290Textgleichungen, Gleichungen mit vielen Klammern, Gleichungssysteme, Textaufgaben zu Körperberechnungen und Wahrscheinlichkeiten sind Inhalt dieses Arbeitsblattes. Anspruchsvolle Aufgaben quer durchs Beet.
Ableitungsfunktion und ihre Anwendung
92 min, 12 Aufgaben #1590Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.
Terme vereinfachen
35 min, 4 Aufgaben #2832Übungen zum Vereinfachen von Termen durch die vier Grundrechenarten: Addition, Subtraktion, Multiplikation und Division. Unter anderem müssen gleichartige Glieder zusammengefasst und Klammern aufgelöst werden.