Einleitung
Originale Arbeit mit 36 erreichbaren Punkten.
24 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Bringe unter eine Wurzel und vereinfache den Radikanden so weit wie möglich.
$8\sqrt{3}$
$4b\sqrt{6b}\cdot\sqrt{3b^4}$, ($b>0$)
Radiziere zunächst so weit wie möglich und vereinfache dann so weit wie möglich.
$6\sqrt{11} - \sqrt{25}\cdot\sqrt{11} + \sqrt{11} - \sqrt{4}\cdot\sqrt{11}$
$\sqrt{1620} - \sqrt{1125} - \sqrt{80}$
Mache den Nenner rational und vereinfache Zähler und Nenner so weit wie möglich.
$\frac{12}{2\sqrt{3}}$
$\frac{2\sqrt{5} + \sqrt{3}}{2\sqrt{5} - \sqrt{3}}$
Vereinfache soweit wie möglich (n$\in\NN$).
$\frac{17^{500}}{17^{200}}$
$7^{2n}\cdot 7^3 \cdot 7^n \cdot 7$
$\left(2^{150}\cdot 9^{150}\right)\cdot (3^{180}\cdot \left(6^{36}\right)^5)$
Vereinfache so weit wie möglich. Im Endergebnis sollen keine negativen Exponenten vorkommen ($x, y, z \in \RR\backslash\{0\}$).
$\left(\frac{2x^8\cdot y^{-3}}{z^5}\right)^2 \cdot \left(\frac{y^2}{x^5\cdot z^{-4}}\right)^3$
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Alle Erklärungen sind auch in einer
Weitere Arbeitsblätter
Quadratische Gleichungen
74 min, 7 Aufgaben #0062Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.
Quadratische Gleichungen
40 min, 5 Aufgaben #0060Die Aufgaben führen schrittweise an das Lösen von reinquadratischen Gleichungen verschiedener Formen heran.
Extremwertaufgaben
72 min, 7 Aufgaben #1599Sieben verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es ein Rechteck im Kreis, der Graph einer Funktion, eine Konservendose oder eine Marmorplatte: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.
Kathetensatz und Höhensatz
37 min, 6 Aufgaben #0045Eine Hälfte beschäftigt sich mit Berechnungen am rechtwinkligen Dreieck. Die andere Hälfte sind schwierigere Textaufgaben.
Rechnen mit Dezimalbrüchen
58 min, 10 Aufgaben #0670Viele Aufgaben zu den vier Hauptrechenarten mit Dezimalbrüchen. Schriftlich muss Plus, Minus, Mal und Durch benutzt werden.