Einleitung
Wenn es um Anteile geht gibt es drei grundlegende Aufgabentypen. Jeweils muss der Groschen dabei fallen, damit man es auch wirklich versteht und weitere mathematische Konzepte erschließbar werden. Passend zu der Thematik beschäftigt sich die andere Hälfte des Arbeitsblattes mit der Umrechnung von Einheiten.
48 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Berechne den Anteil.
$\frac{1}{7}$ von $35\,\mathrm{km}$
$\frac{5}{7}$ von $35 \,\mathrm{km}$
$\frac{1}{8}$ von $24 \,\mathrm{kg}$
$\frac{5}{8}$ von $24 \,\mathrm{kg}$
$\frac{1}{4}$ von $60 \,\mathrm{min}$
$\frac{5}{4}$ von $60 \,\mathrm{min}$
$\frac{1}{5}$ von $150 \,\mathrm{m}$
$\frac{2}{5}$ von $150 \,\mathrm{m}$
Berechne die Ausgangsgröße.
$\frac{3}{5}$ sind $90\,\mathrm{min}$
$\frac{3}{4}$ sind $48\,\mathrm{m}$
$\frac{3}{2}$ sind $45\,\mathrm{l}$
$\frac{7}{8}$ sind $63\,\mathrm{kg}$
$\frac{7}{2}$ sind $420\euro$
$\frac{2}{3}$ sind $72\, \mathrm{m^2}$
$\frac{3}{8}$ sind $132\, \mathrm{m^3}$
$\frac{4}{5}$ sind $600\, \mathrm{g}$
Berechne den Bruchteil.
$15\, \mathrm{g}$ von $36\, \mathrm{g}$
$18\, \mathrm{kg}$ von $32\, \mathrm{kg}$
$12\, \euro$ von $80\, \euro$
$72\, \mathrm{l}$ von $120\, \mathrm{l}$
$256\, \mathrm{m}$ von $320\, \mathrm{m}$
$80\, \mathrm{min}$ von $120\, \mathrm{min}$
$32\, \mathrm{m^2}$ von $160\, \mathrm{m^2}$
$540\, \mathrm{m^3}$ von $720\, \mathrm{m^3}$
$8\, \mathrm{a}$ von $20\, \mathrm{a}$
Wandle in Gramm um.
$\frac{1}{2} \,\mathrm{kg}$
$\frac{3}{2} \,\mathrm{kg}$
$\frac{1}{4} \,\mathrm{kg}$
$\frac{5}{4} \,\mathrm{kg}$
$\frac{1}{8} \,\mathrm{kg}$
$\frac{5}{8} \,\mathrm{kg}$
$\frac{7}{8} \,\mathrm{kg}$
$\frac{11}{8} \,\mathrm{kg}$
Wandle in Zentimeter um.
$\frac{1}{4} \,\mathrm{m}$
$\frac{3}{4} \,\mathrm{m}$
$\frac{2}{5} \,\mathrm{m}$
$\frac{3}{5} \,\mathrm{m}$
$\frac{6}{5} \,\mathrm{m}$
$\frac{9}{10} \,\mathrm{m}$
$\frac{7}{20} \,\mathrm{m}$
$\frac{3}{25} \,\mathrm{m}$
Wandle in die angegebene Einheit um.
$\frac{3}{8}$ von $1\,\mathrm{kg} \,\,\,[\,\mathrm{g}\,]$
$\frac{4}{5}$ von $1\,\mathrm{m} \,\,\,[\,\mathrm{dm}\,]$
$\frac{5}{6}$ von $1\,\mathrm{h} \,\,\,[\,\mathrm{min}\,]$
$\frac{3}{2}$ von $1\,\mathrm{l} \,\,\,[\,\mathrm{ml}\,]$
$\frac{5}{8}$ von $1\,\mathrm{km} \,\,\,[\,\mathrm{m}\,]$
$\frac{5}{4}$ von $1\,\mathrm{m^2} \,\,\,[\,\mathrm{cm^2}\,]$
$\frac{1}{5}$ von $1\,\mathrm{A} \,\,\,[\,\mathrm{mA}\,]$
$\frac{4}{8}$ von $1\,\mathrm{V} \,\,\,[\,\mathrm{mV}\,]$
$\frac{1}{4}$ von $1\,\mathrm{h} \,\,\,[\,\mathrm{min}\,]$
Weitere Arbeitsblätter
Arbeit - quadratische Funktionen
39 min, 4 Aufgaben #0069Eine originale Arbeit mit 46 erreichbaren Punkten zum Thema quadratische Funktionen. Mit dabei: Linearfaktor, Satz von Vieta, Scheitelpunktsform, Optimierungsproblem und Imbiss Bronko.
Wurzelterme vereinfachen ohne Taschenrechner
41 min, 13 Aufgaben #0990Viele verschiedene Aufgaben zum Zusammenfassen von Wurzeltermen. Dabei werden neben den Wurzelgesetzen auch binomische Formeln benötigt.
Extremwertaufgaben
72 min, 7 Aufgaben #1599Sieben verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es ein Rechteck im Kreis, der Graph einer Funktion, eine Konservendose oder eine Marmorplatte: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.
Abzählverfahren
54 min, 7 Aufgaben #1650Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien. Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.
Klassenarbeit binomische Formeln
33 min, 8 Aufgaben #3132Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.