Einleitung
Wenn es um Anteile geht gibt es drei grundlegende Aufgabentypen. Jeweils muss der Groschen dabei fallen, damit man es auch wirklich versteht und weitere mathematische Konzepte erschließbar werden. Passend zu der Thematik beschäftigt sich die andere Hälfte des Arbeitsblattes mit der Umrechnung von Einheiten.
48 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Berechne den Anteil.
$\frac{1}{7}$ von $35\,\mathrm{km}$
$\frac{5}{7}$ von $35 \,\mathrm{km}$
$\frac{1}{8}$ von $24 \,\mathrm{kg}$
$\frac{5}{8}$ von $24 \,\mathrm{kg}$
$\frac{1}{4}$ von $60 \,\mathrm{min}$
$\frac{5}{4}$ von $60 \,\mathrm{min}$
$\frac{1}{5}$ von $150 \,\mathrm{m}$
$\frac{2}{5}$ von $150 \,\mathrm{m}$
Berechne die Ausgangsgröße.
$\frac{3}{5}$ sind $90\,\mathrm{min}$
$\frac{3}{4}$ sind $48\,\mathrm{m}$
$\frac{3}{2}$ sind $45\,\mathrm{l}$
$\frac{7}{8}$ sind $63\,\mathrm{kg}$
$\frac{7}{2}$ sind $420\euro$
$\frac{2}{3}$ sind $72\, \mathrm{m^2}$
$\frac{3}{8}$ sind $132\, \mathrm{m^3}$
$\frac{4}{5}$ sind $600\, \mathrm{g}$
Berechne den Bruchteil.
$15\, \mathrm{g}$ von $36\, \mathrm{g}$
$18\, \mathrm{kg}$ von $32\, \mathrm{kg}$
$12\, \euro$ von $80\, \euro$
$72\, \mathrm{l}$ von $120\, \mathrm{l}$
$256\, \mathrm{m}$ von $320\, \mathrm{m}$
$80\, \mathrm{min}$ von $120\, \mathrm{min}$
$32\, \mathrm{m^2}$ von $160\, \mathrm{m^2}$
$540\, \mathrm{m^3}$ von $720\, \mathrm{m^3}$
$8\, \mathrm{a}$ von $20\, \mathrm{a}$
Wandle in Gramm um.
$\frac{1}{2} \,\mathrm{kg}$
$\frac{3}{2} \,\mathrm{kg}$
$\frac{1}{4} \,\mathrm{kg}$
$\frac{5}{4} \,\mathrm{kg}$
$\frac{1}{8} \,\mathrm{kg}$
$\frac{5}{8} \,\mathrm{kg}$
$\frac{7}{8} \,\mathrm{kg}$
$\frac{11}{8} \,\mathrm{kg}$
Wandle in Zentimeter um.
$\frac{1}{4} \,\mathrm{m}$
$\frac{3}{4} \,\mathrm{m}$
$\frac{2}{5} \,\mathrm{m}$
$\frac{3}{5} \,\mathrm{m}$
$\frac{6}{5} \,\mathrm{m}$
$\frac{9}{10} \,\mathrm{m}$
$\frac{7}{20} \,\mathrm{m}$
$\frac{3}{25} \,\mathrm{m}$
Wandle in die angegebene Einheit um.
$\frac{3}{8}$ von $1\,\mathrm{kg} \,\,\,[\,\mathrm{g}\,]$
$\frac{4}{5}$ von $1\,\mathrm{m} \,\,\,[\,\mathrm{dm}\,]$
$\frac{5}{6}$ von $1\,\mathrm{h} \,\,\,[\,\mathrm{min}\,]$
$\frac{3}{2}$ von $1\,\mathrm{l} \,\,\,[\,\mathrm{ml}\,]$
$\frac{5}{8}$ von $1\,\mathrm{km} \,\,\,[\,\mathrm{m}\,]$
$\frac{5}{4}$ von $1\,\mathrm{m^2} \,\,\,[\,\mathrm{cm^2}\,]$
$\frac{1}{5}$ von $1\,\mathrm{A} \,\,\,[\,\mathrm{mA}\,]$
$\frac{4}{8}$ von $1\,\mathrm{V} \,\,\,[\,\mathrm{mV}\,]$
$\frac{1}{4}$ von $1\,\mathrm{h} \,\,\,[\,\mathrm{min}\,]$
Weitere Arbeitsblätter
Wurzelterme vereinfachen ohne Taschenrechner
41 min, 13 Aufgaben #0990Viele verschiedene Aufgaben zum Zusammenfassen von Wurzeltermen. Dabei werden neben den Wurzelgesetzen auch binomische Formeln benötigt.
Lineare Funktionen
54 min, 6 Aufgaben #3800Dieses Arbeitsblatt führt an lineare Funktionen heran. Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.
Gauß Verfahren
84 min, 7 Aufgaben #1777Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.
Bernoulli-Ketten Anwendung
37 min, 4 Aufgaben #1701Anwendungsaufgaben zu Bernoulli-Ketten. Die ersten zwei Aufgaben fragen die grundlegenden Berechnungen ab. Die dritte ist vom Typ mindestens-mindestens und die vierte zeichnet sich durch eine äußert schwierige Aufgabenstellung aus. Ein kühler Kopf ist hier gefragt.
Abzählverfahren
35 min, 6 Aufgaben #1651Verschiedene Aufgaben mit Würfel-Würfen und Zahlen mit ihren Ziffern. Gefragt ist jedes mal nach der Wahrscheinlichkeit, dass ein bestimmtes Ereignis passiert. Schwierigkeit liegt darin herauszufinden, was die Anzahl aller Ergebnisse und die Anzahl der günstigen Ergebnisse ist.