Einleitung
Wenn es um Anteile geht gibt es drei grundlegende Aufgabentypen. Jeweils muss der Groschen dabei fallen, damit man es auch wirklich versteht und weitere mathematische Konzepte erschließbar werden. Passend zu der Thematik beschäftigt sich die andere Hälfte des Arbeitsblattes mit der Umrechnung von Einheiten.
48 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Berechne den Anteil.
$\frac{1}{7}$ von $35\,\mathrm{km}$
$\frac{5}{7}$ von $35 \,\mathrm{km}$
$\frac{1}{8}$ von $24 \,\mathrm{kg}$
$\frac{5}{8}$ von $24 \,\mathrm{kg}$
$\frac{1}{4}$ von $60 \,\mathrm{min}$
$\frac{5}{4}$ von $60 \,\mathrm{min}$
$\frac{1}{5}$ von $150 \,\mathrm{m}$
$\frac{2}{5}$ von $150 \,\mathrm{m}$
Berechne die Ausgangsgröße.
$\frac{3}{5}$ sind $90\,\mathrm{min}$
$\frac{3}{4}$ sind $48\,\mathrm{m}$
$\frac{3}{2}$ sind $45\,\mathrm{l}$
$\frac{7}{8}$ sind $63\,\mathrm{kg}$
$\frac{7}{2}$ sind $420\euro$
$\frac{2}{3}$ sind $72\, \mathrm{m^2}$
$\frac{3}{8}$ sind $132\, \mathrm{m^3}$
$\frac{4}{5}$ sind $600\, \mathrm{g}$
Berechne den Bruchteil.
$15\, \mathrm{g}$ von $36\, \mathrm{g}$
$18\, \mathrm{kg}$ von $32\, \mathrm{kg}$
$12\, \euro$ von $80\, \euro$
$72\, \mathrm{l}$ von $120\, \mathrm{l}$
$256\, \mathrm{m}$ von $320\, \mathrm{m}$
$80\, \mathrm{min}$ von $120\, \mathrm{min}$
$32\, \mathrm{m^2}$ von $160\, \mathrm{m^2}$
$540\, \mathrm{m^3}$ von $720\, \mathrm{m^3}$
$8\, \mathrm{a}$ von $20\, \mathrm{a}$
Wandle in Gramm um.
$\frac{1}{2} \,\mathrm{kg}$
$\frac{3}{2} \,\mathrm{kg}$
$\frac{1}{4} \,\mathrm{kg}$
$\frac{5}{4} \,\mathrm{kg}$
$\frac{1}{8} \,\mathrm{kg}$
$\frac{5}{8} \,\mathrm{kg}$
$\frac{7}{8} \,\mathrm{kg}$
$\frac{11}{8} \,\mathrm{kg}$
Wandle in Zentimeter um.
$\frac{1}{4} \,\mathrm{m}$
$\frac{3}{4} \,\mathrm{m}$
$\frac{2}{5} \,\mathrm{m}$
$\frac{3}{5} \,\mathrm{m}$
$\frac{6}{5} \,\mathrm{m}$
$\frac{9}{10} \,\mathrm{m}$
$\frac{7}{20} \,\mathrm{m}$
$\frac{3}{25} \,\mathrm{m}$
Wandle in die angegebene Einheit um.
$\frac{3}{8}$ von $1\,\mathrm{kg} \,\,\,[\,\mathrm{g}\,]$
$\frac{4}{5}$ von $1\,\mathrm{m} \,\,\,[\,\mathrm{dm}\,]$
$\frac{5}{6}$ von $1\,\mathrm{h} \,\,\,[\,\mathrm{min}\,]$
$\frac{3}{2}$ von $1\,\mathrm{l} \,\,\,[\,\mathrm{ml}\,]$
$\frac{5}{8}$ von $1\,\mathrm{km} \,\,\,[\,\mathrm{m}\,]$
$\frac{5}{4}$ von $1\,\mathrm{m^2} \,\,\,[\,\mathrm{cm^2}\,]$
$\frac{1}{5}$ von $1\,\mathrm{A} \,\,\,[\,\mathrm{mA}\,]$
$\frac{4}{8}$ von $1\,\mathrm{V} \,\,\,[\,\mathrm{mV}\,]$
$\frac{1}{4}$ von $1\,\mathrm{h} \,\,\,[\,\mathrm{min}\,]$
Weitere Arbeitsblätter
Ebenengleichungen
22 min, 4 Aufgaben #1925Überblick aller drei Arten von Ebenengleichungen und wie man jeweils von einer Form in die andere kommt. Paramatergleichung, Normalengleichung und Koordinantengleichungen werden alle untereinander umgeformt.
Rechnen mit Dezimalbrüchen
58 min, 10 Aufgaben #0670Viele Aufgaben zu den vier Hauptrechenarten mit Dezimalbrüchen. Schriftlich muss Plus, Minus, Mal und Durch benutzt werden.
Lineare Gleichungen
58 min, 5 Aufgaben #3738Einführung in das Umstellen von linearen Gleichungen. Die Aufgaben beginnen ganz einfach und werden dann nach und nach schwerer. Am Ende hat man gelernt: Klammern auflösen, links und rechts zusammenfassen, alles mit x auf die eine und alles ohne x auf die andere Seite. Zum Schluss noch durch die Zahl vor dem x teilen und fertig ist man.
Quadratische Gleichungen
40 min, 5 Aufgaben #0060Die Aufgaben führen schrittweise an das Lösen von reinquadratischen Gleichungen verschiedener Formen heran.
Terme und Gleichungen in Texten
57 min, 10 Aufgaben #1300Das Arbeitsblatt besteht aus 3 Teilen. Aufgestellt werden müssen Terme (1), einfache Gleichungen (2), schwierige Gleichungen (3).