Einleitung
Wenn es um Anteile geht gibt es drei grundlegende Aufgabentypen. Jeweils muss der Groschen dabei fallen, damit man es auch wirklich versteht und weitere mathematische Konzepte erschließbar werden. Passend zu der Thematik beschäftigt sich die andere Hälfte des Arbeitsblattes mit der Umrechnung von Einheiten.
48 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Berechne den Anteil.
$\frac{1}{7}$ von $35\,\mathrm{km}$
$\frac{5}{7}$ von $35 \,\mathrm{km}$
$\frac{1}{8}$ von $24 \,\mathrm{kg}$
$\frac{5}{8}$ von $24 \,\mathrm{kg}$
$\frac{1}{4}$ von $60 \,\mathrm{min}$
$\frac{5}{4}$ von $60 \,\mathrm{min}$
$\frac{1}{5}$ von $150 \,\mathrm{m}$
$\frac{2}{5}$ von $150 \,\mathrm{m}$
Berechne die Ausgangsgröße.
$\frac{3}{5}$ sind $90\,\mathrm{min}$
$\frac{3}{4}$ sind $48\,\mathrm{m}$
$\frac{3}{2}$ sind $45\,\mathrm{l}$
$\frac{7}{8}$ sind $63\,\mathrm{kg}$
$\frac{7}{2}$ sind $420\euro$
$\frac{2}{3}$ sind $72\, \mathrm{m^2}$
$\frac{3}{8}$ sind $132\, \mathrm{m^3}$
$\frac{4}{5}$ sind $600\, \mathrm{g}$
Berechne den Bruchteil.
$15\, \mathrm{g}$ von $36\, \mathrm{g}$
$18\, \mathrm{kg}$ von $32\, \mathrm{kg}$
$12\, \euro$ von $80\, \euro$
$72\, \mathrm{l}$ von $120\, \mathrm{l}$
$256\, \mathrm{m}$ von $320\, \mathrm{m}$
$80\, \mathrm{min}$ von $120\, \mathrm{min}$
$32\, \mathrm{m^2}$ von $160\, \mathrm{m^2}$
$540\, \mathrm{m^3}$ von $720\, \mathrm{m^3}$
$8\, \mathrm{a}$ von $20\, \mathrm{a}$
Wandle in Gramm um.
$\frac{1}{2} \,\mathrm{kg}$
$\frac{3}{2} \,\mathrm{kg}$
$\frac{1}{4} \,\mathrm{kg}$
$\frac{5}{4} \,\mathrm{kg}$
$\frac{1}{8} \,\mathrm{kg}$
$\frac{5}{8} \,\mathrm{kg}$
$\frac{7}{8} \,\mathrm{kg}$
$\frac{11}{8} \,\mathrm{kg}$
Wandle in Zentimeter um.
$\frac{1}{4} \,\mathrm{m}$
$\frac{3}{4} \,\mathrm{m}$
$\frac{2}{5} \,\mathrm{m}$
$\frac{3}{5} \,\mathrm{m}$
$\frac{6}{5} \,\mathrm{m}$
$\frac{9}{10} \,\mathrm{m}$
$\frac{7}{20} \,\mathrm{m}$
$\frac{3}{25} \,\mathrm{m}$
Wandle in die angegebene Einheit um.
$\frac{3}{8}$ von $1\,\mathrm{kg} \,\,\,[\,\mathrm{g}\,]$
$\frac{4}{5}$ von $1\,\mathrm{m} \,\,\,[\,\mathrm{dm}\,]$
$\frac{5}{6}$ von $1\,\mathrm{h} \,\,\,[\,\mathrm{min}\,]$
$\frac{3}{2}$ von $1\,\mathrm{l} \,\,\,[\,\mathrm{ml}\,]$
$\frac{5}{8}$ von $1\,\mathrm{km} \,\,\,[\,\mathrm{m}\,]$
$\frac{5}{4}$ von $1\,\mathrm{m^2} \,\,\,[\,\mathrm{cm^2}\,]$
$\frac{1}{5}$ von $1\,\mathrm{A} \,\,\,[\,\mathrm{mA}\,]$
$\frac{4}{8}$ von $1\,\mathrm{V} \,\,\,[\,\mathrm{mV}\,]$
$\frac{1}{4}$ von $1\,\mathrm{h} \,\,\,[\,\mathrm{min}\,]$
Weitere Arbeitsblätter
Anwendungsaufgaben Körper
13 min, 4 Aufgaben #9599Zusammengesetzte Aufgaben mit Zylindern, Kegeln und Kugeln bezüglich Volumen und Oberflächen. Kombiniert sind die Aufgaben mit Prozentrechnung, Dreisatz und Dichte.
Sinus - Kosinus - Tangens
41 min, 6 Aufgaben #7000Sinus, Kosinus und Tangens von leicht bis schwer. Zunächst Aufgaben mit den Gleichungen und all ihren Varianten. Danach Standard-Aufgaben an rechtwinkligen Dreiecken und die zweite Hälfte sind Textaufgaben bei denen das gleiche noch einmal drankommt mit dem gewissen Etwas, das anspruchsvolle Aufgaben ausmacht.
Übungsaufgaben zur Stochastik
30 min, 6 Aufgaben #1654Die ersten fünf Aufgaben fragen danach, wie viele Elemente oder Möglichkeiten es gibt, und sind damit klassische Aufgaben zu Abzählverfahren (Kombinatorik). Die letzte Aufgabe beschäftigt sich mit Baumdiagrammen und Bernoulli-Ketten.
Anwendungsaufgaben radioaktiver Zerfall
58 min, 5 Aufgaben #6543Textaufgaben über Stoffe, die exponentiell Zerfallen. Wertetabellen, Prozente und Halbwertszeiten kommen unter anderem vor. Es sind im Wesentlichen verschiedene Aufgaben zu Exponentialfunktionen deren Wachstumsfaktor kleiner als 1 ist.
Terme vereinfachen
35 min, 4 Aufgaben #2832Übungen zum Vereinfachen von Termen durch die vier Grundrechenarten: Addition, Subtraktion, Multiplikation und Division. Unter anderem müssen gleichartige Glieder zusammengefasst und Klammern aufgelöst werden.