Einleitung

Wenn es um Anteile geht gibt es drei grundlegende Aufgabentypen. Jeweils muss der Groschen dabei fallen, damit man es auch wirklich versteht und weitere mathematische Konzepte erschließbar werden. Passend zu der Thematik beschäftigt sich die andere Hälfte des Arbeitsblattes mit der Umrechnung von Einheiten.

48 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Berechne den Anteil.

$\frac{1}{7}$ von $35\,\mathrm{km}$

$\frac{5}{7}$ von $35 \,\mathrm{km}$

$\frac{1}{8}$ von $24 \,\mathrm{kg}$

$\frac{5}{8}$ von $24 \,\mathrm{kg}$

$\frac{1}{4}$ von $60 \,\mathrm{min}$

$\frac{5}{4}$ von $60 \,\mathrm{min}$

$\frac{1}{5}$ von $150 \,\mathrm{m}$

$\frac{2}{5}$ von $150 \,\mathrm{m}$

2

Berechne die Ausgangsgröße.

$\frac{3}{5}$ sind $90\,\mathrm{min}$

$\frac{3}{4}$ sind $48\,\mathrm{m}$

$\frac{3}{2}$ sind $45\,\mathrm{l}$

$\frac{7}{8}$ sind $63\,\mathrm{kg}$

$\frac{7}{2}$ sind $420\euro$

$\frac{2}{3}$ sind $72\, \mathrm{m^2}$

$\frac{3}{8}$ sind $132\, \mathrm{m^3}$

$\frac{4}{5}$ sind $600\, \mathrm{g}$

3

Berechne den Bruchteil.

$15\, \mathrm{g}$ von $36\, \mathrm{g}$

$18\, \mathrm{kg}$ von $32\, \mathrm{kg}$

$12\, \euro$ von $80\, \euro$

$72\, \mathrm{l}$ von $120\, \mathrm{l}$

$256\, \mathrm{m}$ von $320\, \mathrm{m}$

$80\, \mathrm{min}$ von $120\, \mathrm{min}$

$32\, \mathrm{m^2}$ von $160\, \mathrm{m^2}$

$540\, \mathrm{m^3}$ von $720\, \mathrm{m^3}$

$8\, \mathrm{a}$ von $20\, \mathrm{a}$

4

Wandle in Gramm um.

$\frac{1}{2} \,\mathrm{kg}$

$\frac{3}{2} \,\mathrm{kg}$

$\frac{1}{4} \,\mathrm{kg}$

$\frac{5}{4} \,\mathrm{kg}$

$\frac{1}{8} \,\mathrm{kg}$

$\frac{5}{8} \,\mathrm{kg}$

$\frac{7}{8} \,\mathrm{kg}$

$\frac{11}{8} \,\mathrm{kg}$

5

Wandle in Zentimeter um.

$\frac{1}{4} \,\mathrm{m}$

$\frac{3}{4} \,\mathrm{m}$

$\frac{2}{5} \,\mathrm{m}$

$\frac{3}{5} \,\mathrm{m}$

$\frac{6}{5} \,\mathrm{m}$

$\frac{9}{10} \,\mathrm{m}$

$\frac{7}{20} \,\mathrm{m}$

$\frac{3}{25} \,\mathrm{m}$

6

Wandle in die angegebene Einheit um.

$\frac{3}{8}$ von $1\,\mathrm{kg} \,\,\,[\,\mathrm{g}\,]$

$\frac{4}{5}$ von $1\,\mathrm{m} \,\,\,[\,\mathrm{dm}\,]$

$\frac{5}{6}$ von $1\,\mathrm{h} \,\,\,[\,\mathrm{min}\,]$

$\frac{3}{2}$ von $1\,\mathrm{l} \,\,\,[\,\mathrm{ml}\,]$

$\frac{5}{8}$ von $1\,\mathrm{km} \,\,\,[\,\mathrm{m}\,]$

$\frac{5}{4}$ von $1\,\mathrm{m^2} \,\,\,[\,\mathrm{cm^2}\,]$

$\frac{1}{5}$ von $1\,\mathrm{A} \,\,\,[\,\mathrm{mA}\,]$

$\frac{4}{8}$ von $1\,\mathrm{V} \,\,\,[\,\mathrm{mV}\,]$

$\frac{1}{4}$ von $1\,\mathrm{h} \,\,\,[\,\mathrm{min}\,]$

PDF zum Drucken

Weitere Arbeitsblätter

Smartphones Abitur GK Berlin 2016

44 min, 6 Aufgaben #1991

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Berechnungen an Körpern

62 min, 6 Aufgaben #9598

Zunächst müssen Skizzen von Zylinder, Kegel, Pyramide und Kugel angefertigt werden. Anschließend gibt es einfache Aufgaben zu Oberfläche und Volumen wobei nur gegebene Werte in entsprechende Formeln eingesetzt werden müssen. Danach variieren die gegebenen Werte, sodass die Formeln umgestellt werden müssen.

Wochenübung mit Klammern und Gleichungen

29 min, 7 Aufgaben #1234

7 Aufgaben für 7 Tage. Es müssen Klammern aufgelöst, Terme zusammengefasst und vor allem Gleichungen gelöst werden. Dabei treten unter anderem auch mal Brüche, die binomischen Formeln und die pq-Formel mit auf.

Mathematische Kompetenzen - Zufall

15 min, 6 Aufgaben #0008

Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.

Arbeit - ganzrationale Funktionen

49 min, 3 Aufgaben #1520

Klassenarbeit über ganzrationale Funktionen mit 55 erreichbaren Punkten.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum