Einleitung

Wenn es um Anteile geht gibt es drei grundlegende Aufgabentypen. Jeweils muss der Groschen dabei fallen, damit man es auch wirklich versteht und weitere mathematische Konzepte erschließbar werden. Passend zu der Thematik beschäftigt sich die andere Hälfte des Arbeitsblattes mit der Umrechnung von Einheiten.

48 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Berechne den Anteil.

$\frac{1}{7}$ von $35\,\mathrm{km}$

$\frac{5}{7}$ von $35 \,\mathrm{km}$

$\frac{1}{8}$ von $24 \,\mathrm{kg}$

$\frac{5}{8}$ von $24 \,\mathrm{kg}$

$\frac{1}{4}$ von $60 \,\mathrm{min}$

$\frac{5}{4}$ von $60 \,\mathrm{min}$

$\frac{1}{5}$ von $150 \,\mathrm{m}$

$\frac{2}{5}$ von $150 \,\mathrm{m}$

2

Berechne die Ausgangsgröße.

$\frac{3}{5}$ sind $90\,\mathrm{min}$

$\frac{3}{4}$ sind $48\,\mathrm{m}$

$\frac{3}{2}$ sind $45\,\mathrm{l}$

$\frac{7}{8}$ sind $63\,\mathrm{kg}$

$\frac{7}{2}$ sind $420\euro$

$\frac{2}{3}$ sind $72\, \mathrm{m^2}$

$\frac{3}{8}$ sind $132\, \mathrm{m^3}$

$\frac{4}{5}$ sind $600\, \mathrm{g}$

3

Berechne den Bruchteil.

$15\, \mathrm{g}$ von $36\, \mathrm{g}$

$18\, \mathrm{kg}$ von $32\, \mathrm{kg}$

$12\, \euro$ von $80\, \euro$

$72\, \mathrm{l}$ von $120\, \mathrm{l}$

$256\, \mathrm{m}$ von $320\, \mathrm{m}$

$80\, \mathrm{min}$ von $120\, \mathrm{min}$

$32\, \mathrm{m^2}$ von $160\, \mathrm{m^2}$

$540\, \mathrm{m^3}$ von $720\, \mathrm{m^3}$

$8\, \mathrm{a}$ von $20\, \mathrm{a}$

4

Wandle in Gramm um.

$\frac{1}{2} \,\mathrm{kg}$

$\frac{3}{2} \,\mathrm{kg}$

$\frac{1}{4} \,\mathrm{kg}$

$\frac{5}{4} \,\mathrm{kg}$

$\frac{1}{8} \,\mathrm{kg}$

$\frac{5}{8} \,\mathrm{kg}$

$\frac{7}{8} \,\mathrm{kg}$

$\frac{11}{8} \,\mathrm{kg}$

5

Wandle in Zentimeter um.

$\frac{1}{4} \,\mathrm{m}$

$\frac{3}{4} \,\mathrm{m}$

$\frac{2}{5} \,\mathrm{m}$

$\frac{3}{5} \,\mathrm{m}$

$\frac{6}{5} \,\mathrm{m}$

$\frac{9}{10} \,\mathrm{m}$

$\frac{7}{20} \,\mathrm{m}$

$\frac{3}{25} \,\mathrm{m}$

6

Wandle in die angegebene Einheit um.

$\frac{3}{8}$ von $1\,\mathrm{kg} \,\,\,[\,\mathrm{g}\,]$

$\frac{4}{5}$ von $1\,\mathrm{m} \,\,\,[\,\mathrm{dm}\,]$

$\frac{5}{6}$ von $1\,\mathrm{h} \,\,\,[\,\mathrm{min}\,]$

$\frac{3}{2}$ von $1\,\mathrm{l} \,\,\,[\,\mathrm{ml}\,]$

$\frac{5}{8}$ von $1\,\mathrm{km} \,\,\,[\,\mathrm{m}\,]$

$\frac{5}{4}$ von $1\,\mathrm{m^2} \,\,\,[\,\mathrm{cm^2}\,]$

$\frac{1}{5}$ von $1\,\mathrm{A} \,\,\,[\,\mathrm{mA}\,]$

$\frac{4}{8}$ von $1\,\mathrm{V} \,\,\,[\,\mathrm{mV}\,]$

$\frac{1}{4}$ von $1\,\mathrm{h} \,\,\,[\,\mathrm{min}\,]$

PDF zum Drucken

Weitere Arbeitsblätter

Einführung Terme

65 min, 8 Aufgaben #2826

Erste Aufgaben zu Termen. Termwerte berechen, Terme vergleichen und Textgleichungen in beide Richtungen: sowohl Gleichungen aus Texten aufstellen aber auch Texte basierend auf Gleichungen verfassen. Die Hälfte der Aufgaben beschäftigt sich mit dem Zusammenfassen von Termen.

Analytische Geometrie - Vermischte Aufgaben

71 min, 5 Aufgaben #1919

Vektoren, Geraden und Ebenen im dreidimensionalen Raum. Die Aufgaben sind bunt gemischt. Angefangen bei Winkeln und Flächeninhalten über fehlende Koordinaten hin zu Abstandsberechnungen, Seitenverhältnissen, Ebenen und sogar Kugeln.

Ableitungsfunktion und ihre Anwendung

92 min, 12 Aufgaben #1590

Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.

Binomische Formeln

89 min, 11 Aufgaben #3120

Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz). Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen. Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert. Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.

Abzählverfahren

54 min, 7 Aufgaben #1650

Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien. Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum